

Supported by

First Preliminary Results from LLD

College W&M **Colorado Sch Mines** Columbia U CompX **General Atomics** INL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** New York U **Old Dominion U** ORNL PPPL PSI **Princeton U** Purdue U SNL Think Tank, Inc. **UC Davis UC Irvine UCLA** UCSD **U** Colorado **U Illinois U** Maryland **U** Rochester **U** Washington **U Wisconsin**

Chaired by Charles H. Skinner, Robert Kaita PPPL

Conference Room LSB-B318, PPPL April 14th, 2010

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U **NIFS** Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA. Frascati CEA, Cadarache **IPP, Jülich IPP**, Garching ASCR, Czech Rep **U** Quebec

Motivation for LLD as presented to PAC Feb'10

- LLD to extend density control for NB CD
- LLD compatible with high flux expansion divertor solutions.

FY10 priorities:

 Develop and understand high-performance operating scenarios utilizing a liquid lithium divertor (LLD) for pumping and particle control.

FY11 priority: Milestone R11-3:

• Assess the relationship between lithiated surface conditions and edge and core plasma conditions.

FY10 goal: test LLD predictions of 33% - 56% reduction in Ne with LLD compared to no-Li.

- Analyse results with particle balance models and 2D fluid (e.g. UEDGE) modeling.
- Study pumping in SGI-fueled discharges vs.
 - strike point location,
 - core ion density,
 - divertor ion flux (vary by SGI fueling),
 - LLD temperature
- Qualify a range of I_P and P_{NB} scenarios for subsequent XPs.

Particle balance model [R. Maingi]: High δ : n_e reduced by 33% cf no-Li case.

Low δ : n_e reduced by 56% cf no-Li case with strike point on LLD.

Look for LLD effect with LLD molten Li @ 210°C but LiTER shuttered.

2/6

Liquid lithium divertor physics design discussion Princeton, NJ April 3, 2007 "Liquid Lithium Divertor 0-D Pumping Projections and Sensitivities" R. Maingi, ORNL *With Acknowledgement to V.A. Soukhanovskii for Lower Divertor D a data

NSTX D_a Peaked on Inboard Side, but Particle Flux Peaked on Outboard side because Inner Divertor is Usually Partially Detached

Skinner Introduction Preliminary 1st LLD results

🛈 NSTX

Comparison of Unpumped and Pumped DIII-D Discharges

3000

3500

OD NSTX

4000

Agenda

Presentations:

•	Skinner	Introduction
•	Kugel	"XP1000 LLD Characterization-Preliminary Results."
•	Jaworski	"Necessary conditions for pumping with liquid lithium."
•	Kallman	"LLD lithium inventory and outgassing studies."
•	McLean	"Status of IR measurements of LLD surface temperature."
•	Scotti	"Preliminary results from LLD fast cameras diagnostic: reflectivity, D-alpha and Li II emission profiles."
•	Skinner	<i>"Li / D balance in LLD."</i>
•	Soukhanovskii:	bullets on Mo, D-alpha (recycling) and change in Ne (given by Skinner).
•	Finkenthal ?	Mo emission ?
•	Paul ?	Mo emission ?
•	Allain	"Surface chemistry analysis of hot lithium coatings on porous Mo substrates"

Available in DragNDrop:

- Gerhardt "A Few Observations on Global Particle Balance During XP-1000" presented at Monday 12 April NXTX physics Mtg.
- Maingi *"Liquid Lithium Divertor 0-D Pumping Projections and Sensitivities"* presented April 3 2007.

Discussion

- How to interpret data so far ?
- Next experiments on LLD ? Implications for 10 other XPs that involve Li ? Menard email 4/13 comment:

"one could argue that being able to diagnose when the LLD is really clean enough and in a "pumping" condition should be a pre-requisite to performing additional experiments with plasma."

XPs with 'LLD' in the title

LLD XPs		r	un days
LR/CC	1000 H. Kugel	LLD Commisioning	3.00
LR	1001 V Soukhanovski	LLD Pumping Group XP	2.00
LR	1002 V Soukhanovski	Core impurity density and radiated power reduction using variations in LLD divertor conditions	1.00
ASC	1006 Gerhardt	High-kappa Neutral Beam Heated Scenarios with Improved Control and LLD	1.00
MS	1021 Gerhardt	Halo current study w/ extended diagnostic capability + LLD	1.00
BP	1049 Maingi	Dependence of edge profile modifi-cation by lithium to proximity to LLD	0.50
BP	1050 Soukhanovski	Divertor heat flux reduction and detachment studies with impurity seeding	
		and LLD pumping for NSTX-0	0.50
BP	1051 Zweben	Test of LLD Electrodes for SOL Control	0.50
LR	1057 Skinner	D retention with LLD	1.00
CC/ALL	1066 Gerhardt	LLD Physics Survey	2.00
CC/LR	1054 Kugel	LLD deCommissioning	0.50
		total:	13.00