

Supported by

OD LLD Pumping Model – results and refinements

College W&M **Colorado Sch Mines** Columbia U CompX **General Atomics** INFI Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** New York U **Old Dominion U** ORNL PPPL PSI **Princeton U** Purdue U **SNL** Think Tank, Inc. **UC Davis** UC Irvine UCLA UCSD **U** Colorado **U Illinois U** Maryland **U** Rochester **U** Washington **U Wisconsin**

Josh Kallman, R. Maingi, V. Soukhanovskii, M. Jaworski, R. Kaita, H. Kugel

> Li RTSG Meeting 5/5/10

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kvushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA. Frascati CEA, Cadarache **IPP, Jülich IPP, Garching** ASCR, Czech Rep **U** Quebec

Overview

- What can 0D models tell us about the plasma density response to a pumping surface?
 - assumptions, data inputs, predictions
 - can we modify the models to be more in concert with observables in NSTX?
- How can we design experiments to verify and refine model predictions?
- Can 0D results be connected to more sophisticated 2D models?

OD Model

0D Model II

OD Model III

0D Model IV

0D Model V

Limits and Uses of 0D Model

- Depends heavily on S/XB number from D_{α} to calculate relative particle flux to LLD
 - can improve S/XB accuracy with local measurements from both inboard and outboard Langmuir probes
 - more direct flux measurements possible with IR and probe data
- Was designed to provide *fraction of total pumping due to LLD*, not specific information about overall pumping
 - more relevant number is *fractional reduction in* τ_p^* *due to LLD, or* $1/(1-\beta) \leftarrow$ measurable both by density pumpout and fueling requirements
- Does not tell us about expected changes to SOL density, assumes steady state
 - but we can eventually modify it to look at just N_{SOL} response

Some dependencies of the model

- Sticking probability is dependent on LLD surface properties
 - has ~30% effect on density pumpout
 - can we refine this number with lab experiments?
- Incident particle fraction is determined mainly by magnetic geometry
 - depending on inboard divertor detachment and OSP location, can be close to 90% for shots on LLD
 - could result in 20-30% changes in efficiency as OSP moves inboard
 - can be related to S/XB, refined with probe measurements

0D model predicts changes to particle lifetime with and without LLD presence

- Scan in Rp, recycling of carbon walls
 - according to J. Canik, should be 92% for pumping, 98% for passivated
- Two cases (more can be added later, but probes measure OBD)

- R = .63 (137550), R = .7 (137611)

 Should provide expected particle lifetimes for active/inactive LLD with and without actively pumping carbon tiles

Results of model suggest experimental sequence

- Start at point 1 on figure: hot LLD, fresh Li on tiles highest pumping scenario
- As carbon tiles passivate, particle confinement time is predicted to increase and fueling requirements will decrease → point 2
 - need enough Li inventory in LLD to ensure it stays active
 - if point 2 should have reproducible density response as pumping conditions stay constant
- As LLD eventually saturates and/or cools, should head towards point 3 with weakest pumping, highest particle lifetime and lowest fueling requirements
 - cooling LLD, passivating surface (without saturating bulk Li), and then reheating (back to point 2) could demonstrate recovery of LLD surface conditions

Tau_p Factor vs. Initial Wall Recycling

XP 1001 will be able to test predictions of 0D model

- Sequence of shots as surrounding tiles passivate can form database for particle confinement time, fueling requirements
 - exponential density decay will give ${\tau_{\rm p}}^*$
 - TS data can show density response of core plasma to SGI gas puff
 - change in overall fueling requirements should be measurable
- Langmuir probes can be used to characterize SOL density response at various SOL depths
- Cold, passive LLD will form basis for comparison
 - does it actually behave like Li on carbon when cold, or does it saturate differently?
 - will give baseline confinement time data with and without active walls (top curve in previous figure)

Future work and more model connections

- Model needs to be adapted to SOL to allow for correlation with edge plasma measurements from probes
- Allow for more data inputs into model, such as time resolved measurements for source terms and flux balances (in/out, up/down)
 - IR camera, visible camera, reflectometer... etc?
- Does UEDGE (or another 2D model) agree with 0D results
 - can 0D results be integrated into UEDGE to provide core or SOL boundary conditions?
- As always, more analysis of dependence of terms in model on LLD surface conditions
 - sticking coefficient may evolve during a discharge due to saturation levels and breakup/formation of surface impurities

