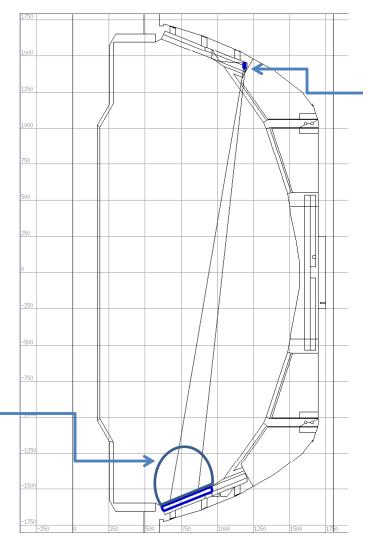
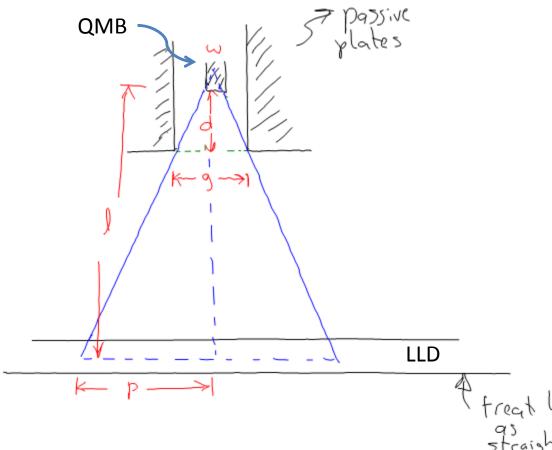

Estimated QMB Deposition Rate Due to LLD Evaporation


D. P. Stotler

PPPL

May 5, 2010

DEGAS 2 Simulation Uses Same 3-D Vessel & Physics Model as Li – He Calculations



Simulated Bay E upper QMB

Cosine distributed source on outer divertor plate

Estimate Toroidal Extent of LLD Visible from QMB

With:

w = 1 cm, d = 15 cm,

g = 4.7 cm, I = 300 cm,

 \Rightarrow p = 37 cm.

2p = 74 cm corresponds to

about 57° in a "straight"

torus.

Code Results

- Output from calculations is P_{QMB} = probability of source atom striking QMB.
- Initial simulation with source localized to same 0.5° toroidal sector as QMB:
 - $\Rightarrow P_{OMB} = 3 \times 10^{-6}$.
- Extend source to \pm 40° on either side of QMB:
 - $\Rightarrow P_{QMB} = 2.8 \times 10^{-6}$.
- Extend source all the way toroidally:
 - $\Rightarrow P_{OMB} = 2.3 \times 10^{-6}$.
 - Getting significant contributions from other side of torus!
 - Otherwise, would be reduced by ~80 / 360.
 - \Rightarrow simple (2-D) model is not going to get this result.

Evaporation Estimate

- Evaluate Moir formula at 320° C,
 - \Rightarrow evaporation rate = 10^{19} Li / (m² s).
- Area of LLD = 1.0 m².
 - \Rightarrow Total Li source = 1.0 x 10¹⁹ Li/s.
- Use $P_{OMB} = 2.3 \times 10^{-6}$,
 - $-\Rightarrow 2.3 \times 10^{13} \text{ Li/s}$ are striking QMB.
 - Simulated QMB area = 1 cm² ⇒ also 2.3 x 10^{13} Li/(cm² s).
- Critical assumption is cosine distribution of source,
 - Should be isotropic?
 - Actual distribution related to "effective area"?