

Supported by

ASC XPs Related to Impurity Control and Reduction

Canik, Gerhardt, Menard

LRTSG Meeting July 14, 2010

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA. Frascati CEA, Cadarache **IPP, Jülich IPP, Garching** ASCR, Czech Rep **U** Quebec

3D field pulses below threshold for ELM-triggering ineffective for impurity screening

- Response to n=3 field observed in divertor D_α even when pulse is too brief or low amplitude to trigger ELM
- 3D field optimized for sub-threshold pulses
 - Maximize n=3 amplitude, duration while avoiding large ELMs
- Without ELMs, particle expulsion insufficient for impurity control
 - No dramatic impact on P_{rad} or carbon inventory evolution

XP1005: modified bias of fiducial plasma after early H-mode reduces plasma density, radiated power, flux consumption

Bias change from -7mm to 0 reduces impurity confinement and/or generation and reduces C Z_{eff} by -1

•Like 2009 result, size of H-mode C impurity "ear" near t=0.3s

() NSTX

Remaining ASC Tasks With Respect to Impurities

- XP-1005 (Menard, et al.): Combine dr_{sep} optimization + divertor gas puffing.
 - Use "fiducial" shot, 800-900 kA, 0.45 T, κ~2.3
 - Attempt to demonstrate significant carbon reduction through both the source term and the magnetic configuration.
- XP-1006 (Gerhardt, et al.): Apply impurity control and fuelling optimization to high-κ scenarios with maximum non-inductive faction.
 - Use high- κ , β , q_{95} discharge scenario, had lowest ever flat-top average V_{loop} .
 - Use optimized early fuelling to achieve target density.
 - Use previously developed impurity reduction techniques to arrest carbon accumulation and density rise (divertor gas, ELM Pacing, dr_{sep}).
 - Additional non-impurity/fuelling related steps.
- XP-1007 (Bell, Canik, et al): Develop scenarios to heat H-mode NB plasmas with HHFWs, use RF to decrease the collisionality and drive out impurities, add ELM pacing as necessary to avoid impurity accumulation.
 - Begin at high- B_T , reduce to lengthen pulse.
 - Serious risk that this experiment will not run if the HHFW system is not brought into use.

Backup

Divertor Gas Puffing Effective in Reducing Z_{eff} and Carbon Inventory

- From Vlad's XP-1002:
 - Separate discussion at this meeting.

- Color Legend:
 - 138752, 138757, 138767: Reference.
 - 138768: 2500 Torr, @ 150 msec, for 100 msec
 - 138769: 3000 Torr, @ 300 msec, for 100 msec
- Clear improvement in impurity situation
 - reduction in Z_{eff} from VB
 - Reduction in total carbon inventory.
 - Increase in Deuterium inventory.

