

Supported by

SOL profile variation before and after LLD fill

College W&M **Colorado Sch Mines** Columbia U CompX **General Atomics** INEL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** New York U **Old Dominion U** ORNL PPPL PSI **Princeton U** Purdue U SNL Think Tank. Inc. **UC Davis UC** Irvine UCLA UCSD **U** Colorado **U Illinois U** Maryland **U** Rochester **U** Washington

U Wisconsin

M.A. Jaworski, J. Kallman, et al.

LLD Fest August 23rd, 2010

Culham Sci Ctr **U St. Andrews** York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI KAIST** POSTECH ASIPP ENEA. Frascati CEA, Cadarache IPP, Jülich **IPP, Garching** ASCR, Czech Rep **U** Quebec

Comparison of 137622 and 139606

- Nearly identical discharges in XP1000 and XP1059
 - Matched Ip, Ne, strike-point control
 - 3MW NBI in 139606 vs. 2MW
 NBI in 137622
- Strike point sweep utilized to generate SOL profile
 - Representative IV trace shown at right (139606, 497ms)
 - Time slice from 460-515ms used in 137622
 - 460-500ms used in 139606
 - Time slices chosen to avoid blobs/ELMs in the discharge

No significant variation in temperature

- Rsep taken from EFIT02
 - Magnetic reconstruction used as reference position
 - Position interpolated between EFIT time slices to obtain position at relevant probe times
- Probe data floating potential taken to indicate strike-point
 - Single and Triple data plotted together
 - Triple data averaged over 0.5ms
 - Vfloat previous used on DIII-D for this purpose (J. Watkins, JNM, 241-243 (1997))
- Mean electron temperature not significantly different
 - Mean taken outboard of Vfloat strike-pt
 - Non-saturating approximation used to interpret triple probe data (see M. Laux, CPP, 2004)

3

Significant variation in density profile

- Density calculation
 - Using nominal 5 degree angle of incidence due to magnetics ambiguity
 - Assumes Te=Ti
- Density profile variation observable in this comparison
 - Gaussian fit applied to get rough idea of profile, only applied to primary feature
 - Peak reduced by ~20%
 - Width reduced by ~40%

Shots examined for macroscopic parameter variation to examine further in probe data

SOL profile modification

Single probe data shows behavior consistent with density pumpout at similar time (3 MW shots)

Comparison of 2 MW shots

Conclusions/open questions

- Density is generally lower in shots with LLD filled, regardless of temperature
 - role of LITER in density and temperature still not clear
 - hot, full, no-LITER shot sequence not performed for comparison
 - density 'pumpout' observed in that probe lsats drop over intervals even as core density is increasing
- Drop in density does not linearly correspond to rise in temperature; temperature profiles are also peaked – does not seem to agree with previous experience
 - highest confinement shot had lowest density and high fueling rate (1600 T on CS)
- Still necessary to compare with 0D or 2D models (thesis work)

