

Supported by



# High-speed dual-band infrared imaging of the LLD and NSTX divertor

College W&M **Colorado Sch Mines** Columbia U CompX **General Atomics** INEL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** New York U **Old Dominion U** ORNL PPPL PSI **Princeton U** Purdue U **SNL** Think Tank, Inc. **UC Davis UC** Irvine **UCLA** UCSD **U** Colorado **U Illinois U** Maryland **U** Rochester **U** Washington **U Wisconsin** 

Adam McLean, Joon-Wook Ahn, M. Benjamin (PU), J. Nichols (PU), Rajesh Maingi, T.K. Gray (ORNL)

August 23, 2010





Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA, Frascati CEA, Cadarache **IPP, Jülich IPP, Garching** ASCR, Czech Rep **U** Quebec

Office of

## **Modifications required for dual-band IR adaptor**

- True-radial view into NSTX vessel
  - Adaptor able to be rotated to view 128x64 pixels in radial or toroidal direction
- Camera mount redesigned to include:
  - ~12" extension to accommodate length of image splitter
- Xeon-based PC operating camera being moved outside of the test cell









## **Fast IR camera view into NSTX**

- IR view currently includes:
  - Toroidal orientation
  - K-H LLD plate (operative)
  - H-E LLD plate (inoperative in early 2010)
  - Gap H bias tile (lithiumcoated graphite, unheated)
  - CHI gap
  - Useful for study of LLD response to plasma
  - Better view of strike points in high-triangularity configuration

# ORNL NSTX Fast Infrared Camera View Dual-band, radial configuration





# NSTX dual-band IR measurements on 7/30/2010



- Similar heating of LLD and graphite tiles surfaces during shot
  - Some significant differences, especially after ELMs
- Temperature during ELMs reach ~500 degC
- Trend after plasma diverts upwards, then plasma terminates (~1100 ms) most interesting
  - LLD first settles at ~230 degC, then quickly (in ~80 ms) reduces to ~180 degC after end of shot
  - Graphite cools from 1100-1400 ms, then also drops ~50 degC at 1400-1500 ms where the cooling trend continues
  - The drop is likely not due to reflections; something physical?



#### Heat flux measurements, 139402

- Steady state heat flux of ~3-4 MW/m<sup>2</sup>
- Peak heat flux in ELMs of ~40-50 MW/m<sup>2</sup> common
- Peak heat flux of 100-200 MW/m<sup>2</sup> found in disruptions



## **Challenges to fast IR operation**

- First: Port window transmission
  - ZnSe IR-transparent LWIR-AR coated window (MFP)
  - Design: Transmission ~75% from 4-6 um, ~95% from 8-12 um (ratio: 1.27)
  - Practice:
    - Start of 2010 campaign (April 2-9): 58.3% MWIR, 66.4% LWIR (ratio: 1.14)
    - LLD Liter fill/heat up (August 5): 32.0% MWIR, 29.2% LWIR (ratio: 0.91)
  - Transmission ratio, April to August: 0.55 MWIR, 0.44 LWIR
  - Transmission ratio, theoretical to August: 0.43 MWIR, 0.31 LWIR
  - Significant loss in SNR, dynamic range
  - Li coating believed to be the cause
    - High absorption of MWIR and LWIR wavelengths (not necessarily so at visible wavelengths)
- Hope for the future
  - Possible 4" gate valve for 2011
  - Jake Nichols (PU graduate student) working on integrating this into the Bay H upper port design

#### Bay H upper port window has suffered...

#### Shot 138242

Shot 139808



**NSTX** 

#### **PPPL physics meeting**

# **'Blotching' apparent everywhere, splatter over outboard divertor**

#### Shot 139796

irsbf\_139796.img - Frame: 811





irsbf\_139685.img - Frame: 388





## Consequence of drop in window transmission A) When transmission was good...

- Shot 138242, 06/04/2010
- Plot shows dualband calibrated surface temperature on X axis, LWIR (blue) and MWIR (red) raw counts on Y axis
- Noise level:
  - ~500 counts
- Peak SNR:
  - 12 LWIR
  - >20 MWIR
- Spread demonstrates wide variation in surface emissivity



#### **NSTX**

#### **PPPL physics meeting**

## Consequence of drop in window transmission B) Transmission plummeting...

Shot 139952, 000 X IDL 2 Temperature vs. Counts of LWIR 8/17/2010 10000 Plot shows dual-band 8000 temperature on X, LWIR (blue) and 6000 MWIR (red) raw 4000 counts on Y Noise level: 2000 ~500 counts 200 600 400 800 (unchanged) Temperature vs. Counts of MWIR 10000 Peak SNR: 4 LWIR 800( 6 MWIR 6000 Minimum reliable 4000 temperature is ~200 2000 Limits heat flux calculation spatially 200 400 600 800

🔘 NSTX

and temporally

## Consequence of drop in window transmission B) Worse at low integration time...

- Shot 139818, 8/13/2010
- T<sub>int</sub>=10.125 us as determined in April to maximize dynamic range
- Minimum reliable temperature measureable is ~400 C





#### **Dual-band IR calibration has also changed...**

- Original LWIR/MWIR ratio as expected with enhanced LWIR transmission through port window
- Decrease in LWIR transmission with coating higher than that of MWIR
- Limited to two insitu calibrations
  - Challenge for interpretation of data between April and August



#### In-vs. ex-situ dual-band IR camera calibration comparison

#### **Second challenge: Camera resets**

- SBFP camera pauses for ~200-225 ms during periods of high dB/dt, caused by either the TF or PF coils nearby.
  - No video data written during this time
  - More recently, resets frequently occur back-to-back
  - Even a single reset creates a challenge for temporal heat flux calculation
- Resets only appear after extended exposure (i.e., first 6-8 weeks of use on the machine had no problems).
- Repair for resets was made in 2009, but extent of repair done at the time is uncertain.





#### **Second challenge: Camera resets**

- Solution not yet isolated in 2010: Separate replacement of detector, primary FPGA, and digital electronics board has not led to improvement.
- Final replacement of analog control board this week hoped to fix problem (at least temporarily).
- Shielding of camera at its location above PF3 coil is not possible
- Future implementation of optical relay by M. Benjamin (PU) is certain to alleviate problem.

#### **Backup slides**



## **Infrared measurements on NSTX**

- Essential for heat load measurement on plasma-facing components during plasma operation, especially in the divertor region
  - Heat flux calculated using 1-D conduction model into semi-infinite solid (2-D in collaboration with IPP Garching)
  - Transient heat load can exceed 10 MW/m<sup>2</sup>
  - Localize hot spots and significant impurity sources
- Use of the LLD in NSTX will make assumptions of high surface emissivity (applicable to graphite) inaccurate
  - Complications include: Surface coating changes in real time during plasma shots, emissivity changes due to H-absorption in Li, reflections from Li surface, deposition of Li on C surfaces, erosion/transport of Li and C
- Two-color camera measures temperature based on the ratio of integrated IR emission in two IR bands, not single band intensity



#### **Primary dual-band IR adaptor components**

- Long-wave pass dichroic beamsplitter
  - Lambda Research Optics (CA, US)
  - Long-wave pass (7-10  $\mu$ m transmit with T<sub>avg</sub>~92%)
  - Medium-wave reflect (4-6 µm reflect with T<sub>avg</sub>~99%)
- Image splitter optical platform
  - CAIRN Research OptoSplit II (UK)
  - Extensively modified for operation in IR
  - Precision multi-axis optical alignment, focusing, flexibility
- Lenses
  - Uncoated ZnSe meniscus input/output lenses (T<sub>avg</sub>~60-70%)
  - To be replaced with broadband AR-coated diffractive optical elements (DOE) hybrid singlet lenses
    - 10X reduction in chromatic aberration, reduced spherical aberration, improved SNR
  - II-VI Infrared (PA, US)
- Shortwave pass (SWP) and longwave pass (LWP) IR filters to limit spectral contamination in each channel
  - Reynard Corporation (CA, US)
- Custom designed lens adaptors/mounts



#### Spectral throughput comparison for IR camera assembly

- Comparison of static throughput losses due to optical components in the dual-band adaptor
- Initial dual-band adaptor reduces throughput by ~4X compared to highest efficiency singleband mode
- Near-term improvements will reduce the difference to ~2X
- Significant margin is available in terms of integration time and dynamic range
  - Drop in transmission has no impact on required performance characteristics

| Optical element      |                   | Wideband operation |            | Dual-band operation<br>meniscus lenses |         | Dual-band operation<br>DOE lenses |         |
|----------------------|-------------------|--------------------|------------|----------------------------------------|---------|-----------------------------------|---------|
|                      |                   | 8–12 μm            | 3–12 μm    | 4–6 μm                                 | 7–10 µm | 4–6 µm                            | 7–10 µm |
|                      |                   | operation          | operation  | band                                   | band    | band                              | band    |
| Observed bandwidth   |                   | 4 μm               | 9 µm       | 2 µm                                   | 3 µm    | 2 µm                              | 3 µm    |
| Bay H port window    |                   | 98%                | 83%        | 70%                                    | 96%     | 70%                               | 96%     |
| Perp. View mirror    |                   | 98%                |            |                                        |         |                                   |         |
| IR primary lens      |                   | 95%                |            |                                        | 75%     |                                   |         |
| Dual-band<br>adapter | Input lens        | N/A                |            | 70%                                    | 72%     | 95%                               | 97%     |
|                      | Mirror 1          | N/A                |            | 98%                                    |         |                                   |         |
|                      | Dichroic          | N/A                |            | 99%                                    | 92%     | 99%                               | 92%     |
|                      | Short pass filter | N/A                |            | N/A                                    | 83%     | N/A                               | 83%     |
|                      | Long pass filter  | N/A                |            | 95%                                    | 90%     | 95%                               | 90%     |
|                      | Mirror 2          | N/A                |            | 98%                                    |         |                                   |         |
|                      | Output lens       | N/A                |            | 70%                                    | 72%     | 95%                               | 97%     |
| Camera window        |                   | 95%                | 96%        | 97%                                    | 97%     | 97%                               | 97%     |
| Two-color adapter    |                   | N/A                |            | 44%                                    | 34%     | 82%                               | 62%     |
| Overall transmission |                   | 87%                | <b>59%</b> | 22%                                    | 23%     | 41%                               | 43%     |



# Demonstrated application of dual-band IR with extensive *ex-situ* calibration

- Accomplished with SBFP camera + dual-band adaptor viewing a blackbody IR source
  - Electro Optical Industries
    WS162 capable of up to 750 C
  - 400+ frames of data taken with 10-75 µs integration time at 1610 Hz frame rate (1.6-12% duty cycle)
- Useful, low error LWIR/MWIR ratio from ~100-600°C
  - Altering IR camera system gain will be explored to see if the useful range of the ratio can be extended up to ~1000°C



SBFP 2-color intensity ratio calibration, blackbody source, 22 us integration time





#### In-situ calibration accomplished during heating of the LLD

- Data captured with dual-band camera viewing LLD plates at 20-320°C
  - Each LLD plate contains 20 thermocouples embedded in their copper substrate, 5 of which are in positions in the view of the fast IR camera
  - Nearly 500 frames of data taken with 10-75 µs integration time for complete comparison to *ex-situ* calibration data
  - Signal in MWIR band (4-6 µm) reduced by 35-45% due to lack of AR-coating for this spectral band on ZnSe port window, plus dust/dirt/deposits
  - Signal in LWIR band (7-10 μm) also reduced 20-25% likely due to dust/dirt/deposits
  - Overall ~20% increase in LWIR/MWIR ratio compared to ex-situ data





#### Dual-band IR technique demonstrated on images taken during plasma operation in NSTX with heated LLD

- *Ex-situ* calibration data of T vs. LWIR/MWIR ratio fitted to functional form, then shifted for best fit to available *in-situ* data
- Data captured in ~350 shots so far, stored to MDSplus
- Maximum 128x64 pixels on IR detector per channel (i.e., band), 1.6 kHz frame rate
- In practice, limited to ~45-55 x 100-110 pixels to prevent channel overlap, and allow adequate background for subtraction
- Data analyzed, temperature calibration applied using custom-designed IDL-based software



## **Dual-band IR data during ELMing H-mode**

- Data taken during plasma operation shows consistently higher temperature from dual-band IR calibration compared to individual single-band calibrations
  - Implies emissivity of lithium/lithium coated surface is lower than during calibrations
- LLD surface temperature reached ~600°C during plasma exposure (K-H plate at 320°C)
- Filament structure from small ELMs (note: not turbulence filaments) clearly resolved, even better than either single-band





## **ORNL IR system currently on NSTX**

- Two slow (30 Hz) IR cameras
  - Indigo Alpha/Omega, 30 Hz, 160x128 pixel uncooled microbolometer FPA, 3.4 x 3.7 x 4.8 cm
  - 7-13  $\mu m,$  12-bit, 0-700 C range, ZnSe window
  - First camera: 15 FOV of lower divertor, ~0.7 cm/pixel resolution
  - Second camera: 15 FOV of upper divertor, ~0.6 cm/pixel resolution

## • One fast (1.6-6.3 kHz) IR camera

- Santa Barbara Focal Plane (Lockheed Martin) ImagIR 128x128, 40µm pixel HgCdTe FPA
- QE>90% from 1.5-11  $\mu$ m, 14-bit, <20 mK NETD
- 25 mm #2.3 Janos Varia (8-12 μm, T<sub>avg</sub>=95%) and Ninox lenses (3-12 μm, T<sub>avg</sub>=75%)
- Bay H, 15.5 FOV of lower divertor, LN<sub>2</sub>-cooled,
- 8-12 µm AR-coated ZnSe window



## **Two-color infrared camera**

- Installation of the LLD will make assumptions of low surface emissivity (applicable to graphite) inaccurate
  - Surface coating changes in real time during plasma shots, emissivity changes due to H-absorption in Li, reflections from Li surface
- Two-color camera measures temperature based on the ratio of integrated IR emission in two IR bands, not on intensity of a single band
- Image split into medium wavelength IR (4-6 μm) and longwavelength IR (7-10 μm) using a dichroic beamsplitter, filtered with bandpass filters, projected side-by-side into the IR camera



#### 3D CAD model of fast IR camera and dual-band adapter



#### **NSTX**

#### **PPPL** physics meeting

#### Future plans for dual-band IR measurement on NSTX

- Mini IR source to allow alignment/focus of system at Bay H port
  - PCMCIA CameraLink card, W-filament and LED IR sources
- Broadband (BB) anti-reflection (AR) coated ZnSe window for port
  - >95% transmission from 3-11  $\mu$ m would significantly improve dual-band SNR
- Optical relay
  - Makes shielding of the camera against EMF interference, and neutron/gamma radiation possible
  - Extremely challenging for broadband IR (4-10  $\mu$ m) due to chromatic aberrations
  - Investigating use of reflective optic design similar to JET/ITER design
- Stepper-motor control of Bay H mirror orientation
  - Difficult to properly aim without *in-situ* IR source (heatable tile in 2011)
- Moveable in-vessel protected mirror or IR fiber for window calibration with ex-situ IR source
  - UHV rotary feedthrough bakeable to 350 C (Lesker)
  - IR optical fiber limited to ~300°C before devitrification

