

Supported by

U.S. DEPARTMENT OF Office of Science

Recycling, pumping and impurity studies with lithium-coated molybdenum PFCs

College W&M **Colorado Sch Mines** Columbia U CompX **General Atomics** INEL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** New York U **Old Dominion U** ORNL PPPL PSI **Princeton U** Purdue U **SNL** Think Tank, Inc. **UC Davis UC** Irvine UCLA UCSD **U** Colorado **U Illinois U** Maryland **U** Rochester **U** Washington **U Wisconsin**

V. A. Soukhanovskii, H. W. Kugel

Acknowledgements: NSTX Team

NSTX Lithium Research TSG meeting Princeton, NJ Tuesday, 14 June, 2011

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA, Frascati CEA. Cadarache IPP, Jülich **IPP, Garching** ASCR, Czech Rep **U** Quebec

Plasma-surface interaction with lithium-coated molybdenum PFCs will be studied in this XP

- Three main deliverables anticipated
 - Recycling in inner and outer divertor strike point regions
 - Lithium coating longevity and interaction with ion fluxes in outer strike point region
 - Molybdenum erosion from lithium-coated divertor molybdenum targets and molybdenum core screening
 - (Carbon sources in Scotti's XP)

... as functions of lithium coating thickness, SOL power, divertor ion flux density

- Connect with LITER 2008 and LLD 2010 analysis
- Provide information for NSTX-U PFC options and lithium strategies
- Connect with other divertor tokamak experience
 - Alcator C-Mod all molybdenum PFCs with boron coatings and lithium pellet PFC conditioning
 - ASDEX-Upgrade mixed tungsten and graphite PFCs and boron coatings

Vary divertor power, ion flux density and lithium rate to study lithium-coated moly PFC

- High-triangularity configuration with PF1B and carbon (inner) and moly (outer) targets, *I_p*=0.8-0.9 MA, ELMfree ?
- Study neutral, ion, impurity (Li, C, Mo) fluxes and particle balance as functions of
 - LITER rate (0-500 mg / shot)
 - NBI power (2-6 MW)
 - Steady-state ion density values (n_d ~ 1-6 x 10¹⁹ m⁻³ by HFS+SGI)
 - Response of SOL and/or divertor density to source perturbation
 - Use SGI gas pulses to measure "pump-out" times

Diagnostic set well suited for divertor recycling and Li, C, Mo erosion measurements

- Key diagnostics
 - D_{α} , lithium and carbon EIES and cameras for full poloidal coverage
 - Neutral pressure gauges
 - Langmuir probes
 - Divertor spectrometers for moly flux profiles
 - Core soft X-ray and VUV spectroscopy (SPRED, Lowes, Xeus)

Spectroscopic method to measure particle fluxes is well developed (e.g., Mo here, but applicable to recycling, Li and C fluxes)

- Prominent Mo I spectral line triplet will be measured with DIMS and VIPS 2 spectrometers
- ADAS S/XB atomic factors will be used to convert spectroscopic measurements to $\Gamma_{\rm moly}$
 - S/XB is a weak function of T_e and n_e

Molybdenum erosion can be significant due to self- and impurity sputtering

SGI singular gas pulses will be used to measure "pump-out" (edge " τ_p^* ")

- Measure dynamic SOL density response to singular flat-top SGI pulses ("pumpout") at various Li temperatures, plasma densities
 - Use FIReTIP channel 7 (*R_{tang}* ~ 150 cm) at midplane (*n_e*)
 - Use divertor Langmuir probes (Γ_i, n_e)
 - Use neutral pressure gauges (Γ_{n_1}, n_0)
- Example Two shots compared
 - 14 mg/min Li evaporation, 10 min clock cycle
 - HFS at 700 Torr + SGI

Lithium-coated graphite vs boronized graphite

 Divertor D_α and Langmuir Probe I_{sat} correlated with SGI pulses, showed density pump-out

Shot plan

- Initial recycling, pumping and impurity influx studies will be done in XMP 71, XP 1133 and XP 1134
 - Important to document moly PFC with no or little lithium
 - Important to understand early vs. mid-campaign PSI
- In high- δ fiducial shape, $I_p = 0.8 0.9$ MA
 - P_{SOL} scan (8 shots)
 - use 2, 4, 6 MW NBI, 100-200 mg Li, SGI diagnostic pulses
 - LITER / density scan (10-14 shots)
 - Use 50, 100-200, 300-400, 500 (?) mg Li
 - Run 2 shots per condition
 - One shot with SGI diagnostic pulses, second shot higher density / higher divertor ion flux with SGI
- In low-δ shape
 - Reduced scope LITER / density scan (≤ 10 shots)
 - Document detachment threshold in inner divertor