

Columbia U

General Atomics

Johns Hopkins U

Nova Photonics

New York U ORNL

Princeton U

Think Tank, Inc.

Purdue U

UC Davis

UC Irvine

U Colorado

U Maryland

U Rochester

U Wisconsin

U Washington

U Illinois

UCLA

UCSD

CompX

FIU

INL

LANL

LLNL

MIT

PPPL

SNL

Lodestar

Supported by

ational Laboratory

Recap of 0-D projections and 2-D SOLPS interpretive modeling of density control from lithium

R. Maingi, J.M. Canik SCAK

Li Research TSG, PPPL 26 Jan 2012

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **NFRI KAIST** POSTECH ASIPP **ENEA**. Frascati CEA. Cadarache IPP, Jülich IPP, Garching ASCR. Czech Rep

Summary of 0-D predictive modeling and 2-D interpretive modeling of lithium coatings in NSTX

- 0-D predictive modeling was done for guidance of LLD location and width
 - Assumed ideal sticking of D to liquid lithium (R_p =0.15), and an application of lithium to LLD only
 - Predicted 20-50% density reduction with LLD
 - Actual experiment had lithium deposited mostly away from LLD on inboard side: <u>lithium pumping on graphite would dominate</u> <u>the LLD effects for short pulse lengths</u>
 - NSTX-U: need local lithium deposition on LLD to isolate effect
- 2-D SOLPS interpretive modeling of lithium on graphite was performed
 - For $\delta \sim 0.5$, R_p went from 0.98 to ~ 0.9 (Canik, PoP 11)
 - For $\delta \sim 0.8$, R_p dropped to ~ 0.85 (Pigarov, Smirnov)

Calculations needed for LLD Tray Design Specification

- The following LLD design parameters need to be specified (target: April 15, 2007):
 - 1) Tray Width
 - 2) Tray Major Radius R_{tray}
 - 3) Number of tray segments, gap size(s) between segments, and clocking of segments $(\phi_{min}-\phi_{max})$
- Minimum density will depend on tray-OSP distance

VSTX

D NSTX

Particle Balance and Recycling Model

🕦 NSTX

Method to Relate 0-D Pump Probability to Divertor Plasma and Lithium tray parameters

Achievable edge density reduction depends on tray radius and width in high δ discharge

Summary of 0-D predictive modeling and 2-D interpretive modeling of lithium coatings in NSTX

- O-D predictive modeling was done for guidance of LLD location and width
 - Assumed ideal sticking of D to liquid lithium (R_p=0.15), and an application of lithium to LLD only
 - Predicted 20-50% density reduction with LLD
 - Actual experiment had lithium deposited mostly away from LLD on inboard side: <u>lithium pumping on graphite would dominate</u> <u>the LLD effects for short pulse lengths</u>
 - NSTX-U: need local lithium deposition on LLD to isolate effect
- 2-D SOLPS interpretive modeling of lithium on graphite was performed
 - For $\delta \sim 0.5$, R_p went from 0.98 to ~ 0.9 (Canik, PoP 11)
 - For $\delta \sim 0.8$, R_p dropped to ~ 0.85 (Pigarov, Smirnov)

Edge stability limits pushed beyond global stability limits with lithium coatings in NSTX

Divertor recycling and cross-field transport coefficients quantified with data-constrained interpretive modeling

- SOLPS (B2-EIRENE: 2D fluid plasma + MC neutrals) used to model NSTX experimental data
 - Iterative Method
 - ✓ Neutrals, impurities contributions
 - $\checkmark\,$ Recycling changes due to lithium

Parameters adjusted to fit data	Measurements used to constrain code
Radial transport coefficients D_{\perp} , χ_e , χ_i	Midplane n _e , T _e , T _i profiles
Divertor recycling	Calibrated D _α
coefficient	camera
Separatrix position/	Peak divertor heat
T _e ^{sep}	flux

10

Midplane and divertor profiles from modeling compare well to experiment for the pre-lithium case

- P=3.7 MW
- R=0.98
- Good match to midplane profiles

- Carbon included: sputtering from PFCs, inward convection to match measured n_c⁶⁺
- Heat flux and D_α, radial decay sharper than experiment

J. Canik PoP 2011

Combining reduced recycling and transport changes gives match to measurements with lithium

Peak D_{α} brightness is matched to experiment to constrain PFC recycling coefficient: lithium reduces R from ~.98 to ~.9

- For each discharge modeled, PFC recycling coefficient R is scanned
 - Fits to midplane data are redone at each R to maintain match to experiment
- D_α emissivity from code is integrated along lines of sight of camera, compared to measured values
 - Best fit indicates reduction of recycling from R~0.98 to R~0.9 when lithium coatings are applied

Particle and heat sources are reduced with lithium

- Pre-lithium case shows typical H-mode structure
 - Barrier region in D, χ_e just inside separatrix
- Pedestal is much wider with lithium
 - D_{\perp} , χ_e similar outside of $\psi_N \sim 0.95$
 - Low D_⊥, χ_e persist to inner boundary of simulation (ψ_N~0.8)
- Changes to profiles with lithium are due to reduced fluxes combined with wide transport barrier

CAK RIDGE

- Extend 0-D predictive model to include variable lithium deposition as in NSTX, and compute effect of LLD
- Extend 0-D model to NSTX-U with improved lithium deposition control?
- Continue 2-D SOLPS interpretive modeling of I_p=1.2 MA discharges to obtain transport coefficients
 - Extrapolate to NSTX-U using known heat flux width scaling in absence of lithium and with lithium
- Extend SOLPS modeling to snowflake scenarios? (being done with UEDGE)

Backup

• Desire predictive models for effect of pumping on NSTX edge plasma

- Provide means for comparing density control schemes, e.g. different Lithium tray design parameters (or even in-vessel cryopumping)
- Should be compared with other experiments and more detailed calculations
- Consider simple recycling model to evaluate examples of each scheme
 - DIII-D data from first cryopump in 1993
 - CDX-U data from liquid Lithium
- Goal: Predict range of reduction in edge density in H-mode

Pumping calculations will help specify the LLD design parameters

• 0-D calculations presented in this talk:

- Parameterized as ratio of pump to core fueling probabilities
- Requires an assumed relation between pump probability and lithium surface area
- 1-D calculations
 - Onion-skin OEDGE type, requires assessment for NSTX
- 2-D fluid calculations (model)
 - T. Rognlien did NSTX calculations in the past for ALPS/APEX
- 2-D fluid + lithium transport calculations (model)
 - T. Rognlien/J. Brooks did NSTX calcs in the past for ALPS/APEX
- 2-D fluid plasma (data-constrained base case)
 - G. Porter, L. Owen, and R. Maingi have done these for DIII-D
- 2-D fluid plasma + kinetic neutrals (data-constrained base case)
 - L. Owen, M. Rensink, and R. Maingi have done these for DIII-D

Discharges #116318 @ 0.6 sec and #121238 @ 0.3 sec used for design calculations

Simplified Particle Balance and Recycling Model

• Define $\tau_p^* = \tau_p/(1-\beta)$

- Steady state:
$$\tau_p^* = N/(S_{NBI} + S_{gas})$$

NSTX

Normal assumptions:

$$- \eta_{NBI} \sim 1$$
$$- \mathcal{R}(n^{-} - + n^{-}) > 1$$

- $\mathcal{R}_p(\eta_{pump} + \eta_{core}) >> (1 R_p)$
- $R_{p}(\eta_{pump} + \eta_{core}) >>(1-R_{p})$ $\eta_{pump}, \eta_{core} \text{ independent of time}$ $\eta_{core} R_{p} \Gamma_{\perp}^{i} \bullet \text{Particle balance equation becomes:}$ $\frac{dN}{dt} = S_{NBI} + (1 + \beta(1 \eta_{gas}))S_{gas} \frac{N}{\tau_{p}^{*}}$

Let
$$S = S_{NBI} + (1 + \beta(1 - \eta_{gas}))S_{gas}$$

Solution:

$$N(t) = S\tau_p^{*,1} + S(\tau_p^{*,2} - \tau_p^{*,1})\exp((t/\tau_p^{*,2}))$$

Has been used to model step change in τ_p (L-H) and pumping ($\eta_{pump} > 0$)

Simplified Particle Balance and Recycling Model

• Density reduction factor

$$n_e^{red} = \tau_{p,pump} * / \tau_{p,nopump} *$$

 $= (1 - \beta)_{noLi} / (1 - \beta)_{Li} \quad \{\text{constant } \tau_{\underline{p}}\}$

$$\beta_{noLi} = \eta_{core} R_p / ((1 - R_p) + R_p * \eta_{core})$$

$$\beta_{Li} = \eta_{core} R_p / ((1 - R_p) + R_p^* (\eta_{core} + \eta_{pump}))$$

Need prescription to estimate η_{Li}

- Is η_{core} really independent of n_e ?
- $\eta_{gas} S_{gas} \quad \bullet \quad \text{Is } \tau_p \text{ really independent of } \mathbf{n_e}?$

Limits of Particle Balance and Recycling Model

$$(1-R_{p})\Gamma_{\perp}^{i} \qquad \eta_{NBI}S_{NBI}$$

$$(1-\eta_{NBI})S_{NBI}$$

$$(1-\eta_{gas})S_{gas}$$

$$N/\tau_{p}$$

$$\Gamma_{\perp}^{i} \qquad \eta_{core}R_{p}\Gamma_{\perp}^{i}$$

$$\eta_{gas}S_{gas}$$

$$\eta_{pump}R_{p}\Gamma_{\perp}^{i}$$

• Note
$$\tau_p * / \tau_p = 1 / (1 - \beta)$$

- Pump off: $\tau_p * / \tau_p \sim 1 + \eta_{core} R_p / (1 R_p)$ - $\tau_p * / \tau_p \sim 6$
- Pump on: $\tau_p * / \tau_p \sim (\eta_{core} + \eta_{pump}) / \eta_{pump}$ - $\tau_p * / \tau_p \sim 2$

> n_e should go down by 2/3 w/pumping

- $\Rightarrow Smaller n_e reduction observed,$ maybe due to increased core fueling $probability at low n_e$
- Input data (from DIII-D studies):
 - $R_p \sim 0.98$ for carbon (reference?)
 - $\eta_{core} \sim 0.1$ (Rensink, PoF B 1993)
 - $\eta_{pump} \sim 0.1$ (Maingi, NF 1999)

NSTX

(0)

Convert D_{α} to particle flux with magic number of 20

- ionizations per photon
- Estimate LLD flux intercept fraction from data for a given R_{tray} , W_{tray} , etc. for a given time slice
 - Vary R_{tray} 1 cm at a time
 - R_{tray} starting point a few cm inside of the outer strike point; avoids interpretation of partially detached inner region
 - Avoid covering CHI gap with tray
 - Iterate on $\eta_{core} \sim 1/n_e^{\alpha}$ (default: $\alpha=2$)
- Repeat for different W_{tray} , R_p , and other input parameters
- Repeat calculations for different shots with different poloidal flux expansion

Comparison of Unpumped and Pumped DIII-D Discharges

4000

NSTX D_{α} Peaked on Inboard Side, but Particle Flux Peaked on Outboard side because Inner Divertor is Usually Partially Detached \bigcirc NSTX

Broad SOL D_{α} profile in high δ (pf1a) #121238

Achievable edge density reduction is reduced if core fueling efficiency $\eta_{core} \sim n_e^{-\alpha}$ NSTX *R*_p*=0.98,* η_{core}^{init}~0.1, W_{trav}=0.1 m LLD fraction of Outer Div. Flux 0.30 **0.10** Net pumping efficiency 8 ୦0 0.25 . 88 88 88 88 $\alpha = \frac{*-1}{+-2}$ 0.08 0.20 ₩ 0.06 0.15 0.04 0.10 0.05 0.02 0.3 0.3 0.9 0.5 0.6 0.7 0.8 0.9 0.5 0.6 0.7 0.8 0.4 0.4 Radius of LLD Tray [m] Radius of LLD Tray [m] #121238 @ 0.3 sec 0.30 0.8 Net fueling efficiency 0.7 0.25 N_e^{LLD}/N_e⁰ 0.6 0.20 0.5 CEREMENT 0.15 0.4 0.3 0.10 0.8 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.3 0.4 0.5 0.6 0.7 0.9 Radius of LLD Tray [m] Radius of LLD Tray [m]

Achievable edge density reduction nearly independent of initial core fueling probability, η_{core}

Narrow SOL D_{α} profile in medium δ (pf1b) #116318

Achievable edge density reduction depends on tray radius and width

Narrow SOL D_{α} profile in low δ (pf2) #119285

Achievable edge density reduction depends on tray radius and width

🕦 NSTX

- 20cm wide tray just outboard of the CHI gap likely to provide sufficient density reduction as required for long pulse high non-inductive fraction reported at the Dec. 2006 research forum
- To get a full 50% density reduction will probably require a tray near the outer strike point
 - Inboard of CHI gap for high δ discharges
 - Outboard of CHI gap for low δ discharges
- Actual density reduction factor depend strongly on how quickly core fueling efficiency increases with decreasing density, and the pre-Li global wall recycling coefficient
- Intend to compare with 2-D calculations, when available

Inner region: as lithium coatings thicken, transport barrier widens, pedestal-top χ_e reduced

