

Supported by

Suppressed gross erosion of high-temperature lithium films under high-flux deuterium bombardment

Coll of Wm & Mary Columbia U CompX **General Atomics** FIU INL Johns Hopkins U LANL LLNL Lodestar MIT Lehigh U **Nova Photonics** ORNL PPPL **Princeton U** Purdue U SNL Think Tank. Inc. **UC Davis UC** Irvine UCLA UCSD **U** Colorado **U Illinois U** Marvland **U** Rochester **U** Tennessee **U** Tulsa **U** Washington **U** Wisconsin X Science LLC

Tyler Abrams

M.A. Jaworski, R. Kaita, J.H. Nichols, D.P. Stotler, G. De Temmerman, T.W. Morgan, M.A. van den Berg, H.J. van der Meiden

> DIII-D Boundary PMI/Meeting **General Atomics, San Diego** July 22, 2014

Culham Sci Ctr York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kvushu Tokai U NIFS Niigata U **U** Tokyo JAEA Inst for Nucl Res. Kiev loffe Inst TRINITI Chonbuk Natl U NFRI KAIST POSTECH Seoul Natl U ASIPP CIEMAT FOM Inst DIFFER ENEA, Frascati CEA, Cadarache **IPP**, Jülich **IPP, Garching** ASCR, Czech Rep

Office of

Outline

- Introduction/Motivation
- Theory of Li erosion
- Experimental apparatus & procedure
- Results/discussion
- B erosion

Lithium improves plasma performance and protects underlying substrates

- Improved performance:
 - Increased n_e , W_{MHD}
 - ELM reduction
- Li protects even fragile porous substrates from high heat fluxes^{a,b}
- Liquid Li is an alternative to W for a DEMO PFC
 - Self-healing under α/n bombardment
 - Eroded material can be replenished by flow

^aG. Mazzitelli et al., FED 2010 ^bT. Abrams et al., JNM 2013

Previous results on flow-flux devices suggest Li erosion may be unacceptably high at elevated temperatures

- Li erosion rate scales with temperature
 - Evaporation (Langmuir Law)
 - T-dependent sputtering (PISCES-B, IIAX, DIII-D)
- Thermal-spike model^a:

$$Y(T_{Li}) = \frac{A}{\sqrt{kT_{Li} + B}} \exp\left(\frac{-1.59 \text{ eV}}{\sqrt{kT_{Li} + B}}\right)$$

A,B: Fitting parameters k: Boltzmann's constant

• Adatom-sublimation model^b:

$$Y(T_{Li}) = \frac{Y_{ad}}{1 + A \exp\left(\frac{E_{eff}}{kT_{Li}}\right)}$$

Y_{ad}, A, E_{eff}: Fitting Parameters

^aJ.P. Allain et al., Phys Rev B 2007 ^bR.P. Doerner et al., J. App. Phys. 2004

Atomic Li Yield vs. Li Temperature Measured on PISCES-B

🔘 NSTX-U

At higher D fluxes and fluence, Li+D mixed-material effects must be accounted for

- Li readily absorbs atomic D, forming LiD^{a,b}
 - D will diffuse into Li^c, resulting in D/Li ratios β up to 1:1^d
 - D buildup is slow on low-flux devices
 - At high fluxes, D bombards surface faster than Li can absorb it

🔘 NSTX-U

Sputtering of LiD is suppressed relative to pure Li

- Preferential sputtering: less atoms available to sputter
- Chemistry: SBE* is higher for LiD (2.26 eV) vs. Li (1.67 eV)

*Assumed equal to heat of sublimation

🔘 NSTX-U

Evaporation of LiD in suppressed relative to pure Li

- Li vapor pressure above Li/LiD mixtures is reduced relative to pure Li
- Reduction factor is independent of temperature

$$\Gamma_{\text{evap}}(T_{Li}) = \frac{p_{Li,D}}{\sqrt{2\pi m_{Li}kT_{Li}}}$$

 Γ_{evap} : Evaporative Li flux p_{Li} : Li vapor pressure m_{Li} : Li mass (6.941 amu)

• Empirical fit formula:

$$\frac{p_{Li,D}}{p_{Li}} = (1 - \beta)^{0.705}$$

E.E. Shpil'rain et al., 1987

Corrected Li erosion model is a function of Li temperature and D concentration in the Li

🔘 NSTX-U

8

Outline

- Introduction/Motivation
- Theory of Li erosion
- Experimental apparatus & procedure
- Results/discussion
- B erosion

Model tested and analyzed in Magnum-PSI linear plasma device

- $\Gamma_{D+} \lesssim 2^* 10^{24} \text{ m}^{-2} \text{s}^{-1}$, $T_e \lesssim 3 \text{ eV}$, $n_e \lesssim 8^* 10^{20} \text{ m}^{-3}$
- 5-10 s pulses, B = 0.25 T at target
- Normal incidence: no magnetic pre-sheath
- Two sample types (both 2.5 mm diameter)
 - Evaporated Coatings ($\leq 1 \mu m$)
 - Shallow Li cups (0.1 1.0 mm)

New procedure developed for loading 0.1-1.0 µm thick Li targets in Magnum-PSI sample holder

- 1. Li melted into sample wells inside Ar glove box
- 2. Sealed with SS shim stock covers & heat-seal mylar bags
- 3. SS cover remained on sample during mounting
- 4. Li exposed to atmosphere for 20-30 s between cover removal & vessel pumpdown
- 5. Ar plasma discharges used to remove oxide coating from Li

Photograph of Li sample before (a) and after (b) Ar plasma discharge cleaning.

Li surface transformed from dark to shiny.

Diagnostic suite provides measurements of plasma n_e/T_e, Li-I impurity radiation, and sample temperature

Li-I emission rates can be interpreted using atomic data from ADAS collisional-radiative model*

*H.P. Summers, "Atomic Data and Analysis Structure User Manual," 2004. (www.adas.ac.uk)

Li yields inferred from Li-I emission measurements

• Solve Li⁰ continuity equation with boundary condition:

$$\nabla \cdot (n_{\mathrm{Li}} v_{\mathrm{Li}}^{\mathrm{v}}) = -n_{\mathrm{Li}} n_e S_{Li}$$

$$\left. n_{Li} \nu_{Li} \right|_{z = 0} = Y_{Li} \times \Gamma_{D+}$$

- Solve for $n_{Li}(r, z, Y_{Li})$
- Model for Li-I photons / m² s: $I_{Li,model} = \int_{0}^{z_{0}} n_{Li} n_{e} P_{Li} dz$

Photon emissivity coefficient (ADAS)

Ionization rate coefficient (ADAS)

• Axially averaged measurement:

$$I_{Li,meas} = T \frac{\Omega_{pixel}}{4\pi} \left(\frac{photons}{s}\right)_{meas}$$

• Set $I_{Li,model} = I_{Li,meas} \rightarrow \text{infer } Y_{Li}$

Axially average Li-I emission

Mixed-material Li erosion model can be tested by varying 1) ion species 2) total D fluence

- 1. Measure Li erosion rate during Ne plasma bombardment
 - Ne is not retained in or chemically reactive with Li
 - Thus model predicts no reduction in erosion rate at high fluxes
- 2. Measure Li erosion rate as β changes dynamically
 - β(t) can be predicted using
 1-D diffusion model for D in Li
 - Significant melt motion led to uncertainty in time evolution of Li thickness
 - Time evolution of β for various thicknesses were tested

Time Evolution of β , Γ_{D+} , and T_{Li} during typical Magnum-PSI discharge

Outline

- Introduction/Motivation
- Theory of Li erosion
- Experimental apparatus & procedure
- Results/discussion
- B erosion

Li yields measured during Ne plasma bombardment are greater than Langmuir Law evaporation

- Suggests erosion model is valid for H-free Li films
- 20 eV Ne→Li erosion much lower than 40 eV
 - Model predicts T-dependent sputtering is independent of E_{Ne+}
 - Possible near-threshold effects for Ne
- 40 eV Ne →Li consistent with previous results for He →Li

Solid line: Thermal-spike or adatom model (indistinguishable) Dashed line: Evaporation only Error bars: Experimental measurements

Li yields measured during D plasma bombardment compared to predictions of adatom mixed-material model

- Error band is distance between homogenous & partial D monolayer surface models
- Adatom mixed-material model captures quantitative evolution of Li erosion rate
 - A priori assumption that Li thickness reduced to ~25 µm
 - Data is most consistent with D monolayer on surface model (bottom of error band)

Numerous physics possibilities have been considered

- Recomb./CX small, but would imply an even lower yield
- Γ_{D+} measured fairly constant 4.0-20 mm from target
- Drifts are almost entirely in azimuthal direction
- Results insensitive to v_{Li} (strong ionization)
- Transmission of optics measured before/after experiments
- Self-sputtering is small, would also imply even lower yield

Outline

- Introduction/Motivation
- Theory of Li erosion
- Experimental apparatus & procedure
- Results/discussion
- B erosion

Preliminary measurements of boron erosion under high-flux D plasma bombardment have also been performed

- 300 nm B layers sputter-coated on TZM Mo
- No strong B lines in visible: use **249.7 nm** line
- Imaged with PIXIS 2040-B camera, ~4 Hz, 1 mm² res.
- Similar analysis applied to data using ADAS tables

Preliminary measurements of boron are significantly higher than on ion- beam experiments

- Y_B >> previous measurement on ion beam device (0.004) and SDTrimSP predictions (0.005)
 - SBE of sputtered coating may be lower than bulk B
 - ADAS ionization rate coeffs. for boron are not n_e-dependent
 - Measured erosion rate consistent w/ depletion after 1-2 s

- Adatom-evaporation mixed-material model developed to predict temperature-dependent Li+D erosion rates
- Techniques for inferring time and spatially dependent erosion yields developed using ADAS atomic phys. data
- Erosion yields of Li and B coatings on TZM Mo measured during high-flux bombardment on Magnum-PSI
- Model captures quantitative dependence of Li erosion yield for thick mixed-material Li/D layers
- B erosion measurements using B-I emission performed for the first time using custom-built optics system

- For more information:
 - "Erosion of lithium coatings on TZM molybdenum and graphite during high-flux plasma bombardment." T. Abrams et al., Fusion Eng. Des. (2014), dx.doi.org/10.1016/j.fusengdes.2014.06.005
 - "Suppressed gross erosion of high-temperature lithium films under high-flux deuterium bombardment." T. Abrams et al., J. Nucl. Mater., under review.
 - Upcoming APS Presentation, Ph.D. Thesis