CAE-KAW coupling potentially important channel for energy transport from plasma core but *coupling not yet experimentally observed – perform expt on DIII-D to identify and quantify*

- CAE-KAW coupling (mode conversion) predicted by HYM simulations: $k_r \rho_{fast} \gtrsim 1$ (not including bulk kinetic effects)
 - CAEs destabilized by beams => radiate energy to edge => mode convert to KAW & dissipate energy
 - Energy channel not in TRANSP: beam energy diverted from core heating to edge heating
- DIII-D represents experimental opportunity to detect coupling
 - validate HYM simulation
- CAEs documented in DIII-D in low and high field plasmas
- Multiple diagnostics sensitive to KAW ($k_r \rho_s \gtrsim 1$, including bulk kinetic effects, $f = f_{CAE} \lesssim f_{ci} = 7$ MHz at 1T):
 - Doppler Backscattering: $k\rho_s \gtrsim 0.1 f < 10 \text{ MHz}$
 - − Phase contrast imaging: $k_R \rho_s \gtrsim 1$, *f* < 10 MHz
- Ingredients for identification of CAE-KAW coupling:
 - 1) Distinguish detection of scattering from interferometer effect
 - 2) Detection of scattering should be radially localized where $\omega = k_{||}v_A \Rightarrow$ establish via profile modification or steering of diagnostic (DBS)