

Supported by

Validating electromagnetic effects on transport and turbulence in high performance plasmas

Walter Guttenfelder¹,

T.L. Rhodes², D.R. Ernst³, N.A. Crocker², Y. Ren¹, S. Kaye¹, D. Brower², J. Chen², C. Sun², K. Barada², K.H. Burrell⁴, B. Grierson¹, C.H. Holland⁵, A. Marinoni³, G.R. McKee⁶, W.A. Peebles², C.C. Petty⁴, G. Wang², Z. Yan⁶

¹PPPL, ²UCLA, ³MIT, ⁴General Atomics, ⁵UCSD, ⁶UW-Madison

NSTX-U / DIII-D Collaborative Research National Campaign 2017

Brainstorming meeting, Oct. 13, 2016

Motivation: Expecting EM effects to be important at high beta in NSTX-U; Can validate internal δ B measurements now at DIII-D

- Two diagnostics sensitive to internal δB now available on DIII-D:
 - Cross polarization scattering (CPS, sensitive to local δB)
 - Radial interferometer-polarimeter (RIP, sensitive to line-integrated δB)
- UCLA planning to install and test CPS (δB) on NSTX-U to investigate magnetic turbulence and relation to confinement now is an ideal time to validate EM effects on transport and turbulence in high-performance discharges (i.e. sufficient β, β_N) in DIII-D
- With a suitable choice of target discharge, can obtain a broad suite of measurements: DBS (δn), CPS (δB), CECE (δTe), BES, PCI, reflectometry
 - Many (all?) of these are now available simultaneously (e.g. $\delta B \delta n$ cross-phase)
 - Need appropriate n & B_T for DBS, CPS, CECE access
- Interesting EM effects generally fall under two categories:
- 1) EM stabilization of ITG/TEM, synergy with fast ions (shown to be important in numerous cases)
- 2) Attempt to destabilize EM modes like KBM, MTM (more relevant to NSTX-U)

Possible target discharges (Some level of GK analysis exists for #'s 1-3)

- 1. ITER-like H-mode (focus of Holland IAEA; Howard MP)
 - Is ITER relevant; focus on EM stabilization of ITG, synergistic effect with fast ions
 - Polarimeter data and validation effort would complement C-mod data from MP this past July
 - Would complement (or duplicate?) experiments from ROF

2. QH mode, shown to have strong EM effects (Holland, NF 2012; Ernst PoP 2016)

- Targets established, good diagnostic access, strong ITG/TEM EM stabilization ρ~0.3
- Many QH modes around $\rho \sim 0.6$ exhibit linearly unstable MTM at low $k_{\theta}\rho_s \sim 0.2$
- Near axis (ρ ~0.3), QH can be near KBM threshold (Ernst, ROF 140)
- BUT, would largely be repeating shots just for new CPS, RIP diagnostic data

3. High β_{pol} , high q_{min} , non-inductive discharges (DIII-D/EAST work, Garafolo et al)

- High beta, strong influence of EM and flow shear effects
- Overlaps with non-inductive scenario development
- Staebler thinks ETG could be very important (similar to NSTX)
- Lower field, NSTX-like shot (B_T≤1 T, Burrell, Bell poloidal CHERS MP; Podesta TAE identity MP)
 - Problems with locked modes, AEs, low field removes CECE access
- Some cases from (2) & (3) exhibit neoclassical ion transport but anomalous electron transport, and GK analysis indicates presence of more exotic EM modes (KBM, MTM) – similar to ST H-mode transport characteristics

General approach

- Establish target, acquire all turbulence data
- Do one or more of following:
- 1) Add steady ECH (increase T_e , ∇T_e in attempt to drive MTM)
- 2) Add modulated ECH (looking for stiff behavior, or onset of MTM, correlation between modulated ∇T_e and turbulence characteristics)
- 3) Modulate NBI (similar to 2, looking for onset of deep core KBM, dynamic change of turbulence characteristics)
- 4) Parameter scan (B_T , n, P, v, β) scaling of δB correlated with changes in transport & confinement

