

n=1 ELM suppression with I+C-coil optimization in DIII-D

Jong-Kyu Park

Informal Meeting, Core SG Oct. 13, 2016

Background and Motivation

- This 0.5 day proposal was motivated by greatly successful n=1 RMP ELM suppression in 2016 KSTAR campaign
- Combined with T. Evans' n=2 KSTAR-DIIID comparison test and assigned in ELM Pedestal Group – Top in 2nd priority (still waiting for RC decision)
- Additional motivations (for n=1) for DIII-D National Campaign
 - Remarkable predictability and flexibility for ELM suppression window in KSTAR
 - Test physics capability of multiple rows for NSTX-U NCC and ITER RMP

NSTX-U

Motivation from KSTAR (2016)

- 3 rows of coils provide great flexibility for 3D spectrum
 - Reason why n=1 ELM suppression is possible in KSTAR
 - No reason why DIII-D (I+C-coil) or future NSTX-U (NCC) can't achieve n=1 ELM suppression when optimized
- Remarkable predictability in complex 3D map was demonstrated using plasma response modeling

Predicted threshold vs. Empirical threshold (Locking "+", ELM suppression "+")

Motivation for DIII-D and NSTX-U

- DIII-D never achieved n=1 ELM suppression, but never explore all 3 rows of coils. Great chance now with super SPAs and 3D SXR
- NSTX-U also never achieved ELM suppression. Greater physics capability is anticipated with NCC, which will give effectively 3 rows of internal coils

Experimental Approach

- Investigate n=1 coupling as a function of $(I_U=I_L, I_C, \phi_{UL}, \phi_{UC}, \phi)$ to maximize edge coupling, while minimizing core coupling and still leaving sizable edge field
 - Unlike KSTAR, n=1 error field must be considered meaning another variable for reference toroidal phase ϕ
 - Reduce variables that we can handle with super SPAs
- Try q₉₅>5 as found in KSTAR and reproduce conditions as much as possible, slightly LSN, P_{NBI} =3-4MW, β_N <2, T_e =2-3keV, n_e ~3x10¹⁹m⁻³, possibly with (R_x , Z_x)
 - R. Buttery explored $\phi_{\text{UL}},$ but only $q_{95}{<}5$ and many other differences from KSTAR target
- Run time required > 0.5 day

