College W&M **Colorado Sch Mines** Columbia U Comp-X **General Atomics** INEL Johns Hopkins U LANL LLNL Lodestar MIT Nova Photonics New York U **Old Dominion U** ORNL **PPPL** PSI **Princeton U SNL** Think Tank, Inc. **UC Davis** UC Irvine **UCLA** UCSD **U** Colorado **U Maryland U** Rochester **U** Washington **U Wisconsin**

Electron Bernstein Wave Emission and Mode Conversion Physics on NSTX

Supported b

S.J. Diem¹, G. Taylor¹, J.B. Caughman²,
P. Efthimion¹, H. Kugel¹, B.P. LeBlanc¹,
C.K. Phillips¹, J. Preinhaelter³,
S.A. Sabbagh⁴, J. Urban³, J. Wilgen²

¹PPPL, ²ORNL, ³Czech Institute of Plasma Physics, ⁴Columbia University

17th High Temperature Plasma Diagnostics Conference May 11-15, 2008

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokvo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST ENEA, Frascati CEA. Cadarache **IPP**, Jülich **IPP**, Garching ASCR, Czech Rep **U** Quebec

Office of

Science

EBW emission may be used for T_e(R) profile measurements in the Spherical Torus (ST)

- NSTX assessing the feasibility of EBE based T_e(R) measurements
 - Measure oblique B-X-O emission covering f_{ce} , $2f_{ce}$ & $3f_{ce}$
 - EBE diagnostic developed in collaboration with ORNL
- Need to optimize B-X-O transmission efficiency (C_{B-X-O}) for robust measurements
 - $C_{\text{B-X-O}}$ depends on $L_{n},\,T_{e},\,\Omega_{ce}/\omega$ at mode conversion layer
 - Remotely steered antennas allow for investigating angular dependence on transmission level
- Modeling required to determine emission location and calculate C_{B-X-O} for T_e(R) reconstruction
 - EBE simulation code developed by Preinhaelter & Urban at Czech Institute of Plasma Physics

VSTX

Low harmonic EC waves do not propagate in the ST

- ECE well established as a T_e(R,t) diagnostic in conventional high aspect ratio tokamaks
 - EC waves cannot propagate in overdense plasmas: $\omega_{pe} >> \Omega_{ce}$
- NSTX has low B-fields and high n_e, cutting off up to first 6 EC harmonics
- EBWs are strongly emitted from EC harmonics
- EBWs cannot propagate in vacuum outside upper hybrid resonance (UHR) layer

Need efficient coupling from EBWs to EM waves for viable diagnostic measurements

EBW coupling to electromagnetic waves

 EBW emitted at EC harmonic converts to X-mode at the UHR and then O-mode

- Emission elliptically polarized due to oblique view of plasma
 - EBW coupling efficiency less sensitive to L_n than B-X conversion
- B-X-O transmission angle depends on field pitch (~30-45°) at MC layer
- L_n at MC layer determines width of window
- Measured $T_{rad} = local T_{e}$ provided $C_{B-X-O} \sim 100\%$

Remotely steered EBE diagnostic allows spatial mapping of emission window

Linear actuators allow $\pm 10^{\circ}$ poloidal and toroidal steering

- Two drives provide motion in poloidal & toroidal direction
- Spherical housing provides steering
- Antennas located outside vacuum vessel
- Quad-ridged antennas measure two orthogonally polarized radiation components
 - Dividing the components yields polarization
 - Adding components yields total power
- Remote steering allows for optimization of B-X-O transmission efficiency
 - Needed for robust $T_e(R,t)$ measurements

18-40 GHz EBW Antenna

Linear steering

VSTX

Emission location determined by EBE simulation code

- Code inputs:
 - Magnetic equilibria (EFIT)
 - T_e & n_e profiles from Thomson scattering
 - Antenna pattern measurements
- $C_{\text{B-X-O}}$ is determined by the full wave solution for a cold plasma slab
 - − Provides method to compute C_{B-X-O} so that T_e profile can be reconstructed $\longrightarrow T_e(R) = T_{rad}(R) / C_{B-X-O}$
- 3D ray-tracing code describes EBW propagation after MC
- T_{rad} determined by simultaneously solving ray equations with the radiative transfer equation for each ray

Observed large T_{rad} fluctuations predominately due to changes in B-X-O transmission efficiency

- T_{rad} fluctuates > 30% for all frequencies
- Microwave edge reflectometer used to measure n_e profile
 - Measured L_n fluctuates from 1 cm to 6 cm
- Theoretical C_{B-X-O} computed using measured L_n values

 Varies as ~ e^{L_n}
- Fluctuation levels of T_{rad} (30%) and C_{B-X-O} (20%) comparable

Maximum T_{rad} used to calculate measured C_{B-X-O}

Initial H-mode EBE measurements exhibited decay in measured T_{rad} during H-mode phase

- Emission decays after L-H transition
 - Observed for $\rm f_{ce}, \, 2f_{ce}$ and $\rm 3f_{ce}$ emission
 - Emission location remains constant during discharge
- Leads to C_{B-X-O} ~ 0% during H-mode
 - Low emission levels prohibit $T_e(R,t)$ measurements
- EBW collisional damping suggested as explanation of measured T_{rad} evolution
 - Damping becomes significant for $\rm T_e\,{<}\,30~eV$ at or inside the UHR layer

EBE simulations suggest low H-mode EBE due to EBW collisional damping

 MC layer moves outside LCFS after L-H transition

 $-T_e < 20 \text{ eV}$ outside LCFS

- EBE simulations with collisional damping predict T_{rad} decay during H-mode
- Relative collision frequency
 increases after L-H transition:
 - Peak υ_{ei}/ω increases from $5x10^{\text{-5}}$ to $1.2x10^{\text{-4}}$
- Damped EBW power increases from 20-40% in the L-mode phase to 70-90% during H-mode

Need method to reduce edge collisionality —> Li conditioning

LIThium EvaporatoR (LITER) provides edge conditioning tool for NSTX

- Improvement in edge n_e and T_e with LITER may be important for B-X-O coupling
 - Coupling depends on $L_{n}\,and\,T_{e}$
- Li conditioning:
 - Increases T_e at MC layer
 - Decreases n_e outside LCFS

NSTX

NSTX Vacuum Vessel

Insertion probe

LITER

Plasma

Center Stack

H-mode C_{B-X-O} increased with Li edge conditioning

- 18 GHz emission from near plasma axis
- C_{B-X-O} increased with Li conditioning:
 - − From 10% → 60% for f_{ce} =18 GHz
 - From 20% → 50% for 2f_{ce}=28 GHz
- Control of edge conditions provides good coupling to EBW

Increased B-X-O coupling allows for more robust conditions for $T_e(R,t)$ measurements

Angle of maximum B-X-O transmission consistent with theory in H-mode plasmas

- Repeated target plasma, ($I_p = 0.9$ MA, $T_e(0) \sim 1$ keV) with Li conditioning
- Maximum measured C_{B-X-O}:
 - 62±15% for f_{ce}=18 GHz near axis emission
 - 49±15% for 2f_{ce}=28 GHz near axis emission
- Measured and predicted angle of peak
 emission consistent in L-mode as well

T_{rad} maximum at $Z_{axis} \sim 0$, in agreement with simulations

- Target H-mode plasma: $I_p=0.8 \text{ MA}, T_e(0)=0.8 \text{ keV}, n_e(0)=3x10^{19} \text{ m}^{-3}$
- Vertical position scanned from -2 to 11 cm
- Drop in measured T_{rad} coincides with increase in Z_{axis}
- Measured and simulated T_{rad} agree during Z_{axis} scan

EBE simulation of Z_{axis} scan suggests increase in Doppler broadening

- Prior to Z_{axis} increase, emission originates near axis (R=1 m)
- At maximum Z_{axis}, R_{emission} shifts out to R=1.4 m
- Simulations show increase
 N_{II} with Z_{axis}
 - Leads to increase in Doppler broadening

Doppler broadening restricts access to core T_e measurements

Lithium edge conditioning provides good target H-mode plasma for $T_e(R,t)$ measurements

- NSTX LCFS R_{0} Lithium edge conditioning reduced 1.4 collisional losses to < 20%EBE simulation calculates C_{B-X-O} and ray emission location Thomson Scattering to re-absorption, re-emission & **EBE** Diagnostic collisional damping Emission location determined by 0.8 1.6 weighted-average emission Major Radius [m] location of the simulated 41 rays
- T_e from EBE diagnostic computed by: $T_e = T_{rad} / C_{B-X-O}$
- Edge EBE simulations more accurate because rays travel through less plasmas

Non-localization of T_e(R) measurements from EBE diagnostic due to multi-harmonic emission

- Harmonic overlap in ST
 occurs from high toroidicity
 - Accurate simulations very important
- Finite size of beam can lead to non-localized measurements
 - Spread in emission location due to Doppler broadening
 - Diagnostic sensitive to emission from multiple harmonics
- Need detailed edge measurements to accurately model EBE process

EBE based T_e(R,t) measurements in the ST are challenging

- Local T_e equal to T_{rad} from EBE measurements provided $C_{B-X-O} \sim 100\%$
 - Coincidence of X- and O-mode cutoffs required for $C_{B-X-O} = 100\%$
- Reconstruction of $T_e(R)$ profile is difficult in the ST
 - Rapid fluctuations in edge L_n lead to > 20% fluctuations in C_{B-X-O}
 - EBW collisional damping in H-mode can quench low harmonic EBE
 - Non-optimal plasma vertical position restricts core $T_e(R)$ measurements
 - Requires knowledge of actual magnetic configuration which is strongly varied by large internal currents
- $T_e(R)$ reconstruction of NSTX H-mode plasma shows agreement with edge T_e from Thomson
 - Larger disagreement with central $\rm T_e$ occurs where Doppler broadening and harmonic overlap effects are increased

Supporting Slide

Lens optimization provides minimal beam waist

- 8-18 GHz antenna
 - 20 cm focal length lens provides beam waist of 10 cm at plasma edge (50 cm in front of the antenna) for 16.5 GHz
 - Focal length ~10 cm for microwaves
- 18-40 GHz antenna
 - 25 cm focal length lens provides beam waist of 6.5 cm at plasma edge for 28 GHz
 - Focal length ~12.5 cm for microwaves

Allows for localized measurements

Dicke switching method provides absolute calibration

- Antenna assembly viewed blackbody source (LN₂ cooled Eccosorb) through chopper wheel
- Blackbody emission signal from antenna fed into radiometer tuned to a particular frequency
 Styrofoam bucket
- Radiometer yields an output voltage proportional to input intensity
 - V_{out}=G(f)T_{rad}
 G(f) is a frequency dependent gain factor (V/eV)

 All vacuum windows, lenses, antennas, and cables used in the experiment included in calibrations

Antenna steering scan provides good coverage of B-X-O window

- Repeated target helium L-mode plasma (I_p=0.8 MA, T_e(0)=1.5 keV, n_e(0)=3x10¹⁹ m⁻³)
 - Moved EBE antennas to new position between shots
- Experimental B-X-O transmission efficiency:

EBE simulations indicate increase in v_{ei} near MC results in significant loss in ray intensity

- High emission (t <0.2 s):
 - $-\upsilon_{ei}/\omega$ ~ 3x10⁻⁵
 - Ray intensity decreased by 40% in edge
- Low emission (t >0.2 s):
 - $-\upsilon_{ei}/\omega \sim 1.2 \text{x} 10^{-4}$
 - Ray intensity decreased by 80% in edge

Edge Li conditioning may reduce edge collisionality

Better T_{rad} agreement with EBE simulation in 19 mg/min Li conditioned plasma

- T_{rad} (measured)
 T_{rad} (sim., no collisions)
 T_{rad} (sim., with collisions)
- For highest Li evaporation rate, 19 mg/min:
 - Measured T_{rad} ~0.4 keV
 - Simulated T_{rad}~0.6 keV
- For 0 mg/min:
 - Measured T_{rad} ~0.1 keV
 - Simulated T_{rad} ~0.4 keV

Control of edge conditions allows for good coupling to EBW

Good agreement between measured and simulated T_{rad} in H-mode

- T_{rad} (measured)
 T_{rad} (sim., no collisions)
 T_{rad} (sim., with collisions)
- Simulated & measured T_{rad}
 0.6 keV for f_{ce}=18 GHz
 - 0.4 keV for 2f_{ce}=28 GHz
- Low EBW collisional damping observed during H-mode scan a

