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EBW emission may be used for Te(R) profile
measurements in the Spherical Torus (ST)

• NSTX assessing the feasibility of EBE based Te(R)
measurements
– Measure oblique B-X-O emission covering fce, 2fce & 3fce
– EBE diagnostic developed in collaboration with ORNL

• Need to optimize B-X-O transmission efficiency (CB-X-O) for
robust measurements
– CB-X-O depends on Ln, Te, Ωce/ω at mode conversion layer
– Remotely steered antennas allow for investigating angular

dependence on transmission level

• Modeling required to determine emission location and
calculate CB-X-O for Te(R) reconstruction
– EBE simulation code developed by Preinhaelter & Urban at Czech

Institute of Plasma Physics
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Low harmonic EC waves do not propagate in the ST

• ECE well established as a Te(R,t) diagnostic in conventional high
aspect ratio tokamaks
– EC waves cannot propagate in overdense plasmas: ωpe >> Ωce

• NSTX has low B-fields and
high ne, cutting off up to
first 6 EC harmonics

• EBWs are strongly emitted
from EC harmonics

• EBWs cannot propagate in
vacuum outside upper hybrid
resonance (UHR) layer

Need efficient coupling from EBWs to EM waves for
viable diagnostic measurements
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EBW coupling to electromagnetic waves

• EBW emitted at EC harmonic
converts to X-mode at the UHR and
then O-mode

• Emission elliptically polarized due
to oblique view of plasma

• EBW coupling efficiency less
sensitive to Ln than B-X conversion

• B-X-O transmission angle depends on
field pitch (~30-45º) at MC layer

• Ln at MC layer determines width of
window

• Measured Trad = local Te provided
CB-X-O ~ 100%

B-X-O transmission window
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Remotely steered EBE diagnostic allows spatial
mapping of emission window

Beam waist

Antenna spatial
scan region

Ln~3 cm

Ln~7 cm

• ±10º scan in poloidal and toroidal
directions between discharges

• Acceptance angle:
− 8-18 GHz antenna ~22º
− 18-40 GHz antenna ~14º

S.J. Diem, et al, Rev. Sci. Instrum. 77 (2006)
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Linear actuators allow ± 10° poloidal and
toroidal steering

• Two drives provide motion
in poloidal & toroidal direction

• Spherical housing provides
steering

• Antennas located outside
vacuum vessel

• Quad-ridged antennas measure two orthogonally polarized
radiation components
– Dividing the components yields polarization
– Adding components yields total power

• Remote steering allows for optimization of B-X-O transmission
efficiency
– Needed for robust Te(R,t) measurements

18-40 GHz EBW Antenna
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Emission location determined by EBE simulation code

• Code inputs:
– Magnetic equilibria (EFIT)
– Te & ne profiles from Thomson scattering
– Antenna pattern measurements

• CB-X-O is determined by the full wave solution for a cold
plasma slab
– Provides method to compute CB-X-O so that Te profile can be

reconstructed         Te(R) = Trad(R) / CB-X-O

• 3D ray-tracing code describes EBW propagation after MC

• Trad determined by simultaneously solving ray equations with
the radiative transfer equation for each ray

J. Urban & J. Preinhaelter, Journal of Plasma Physics, 72 (2006)
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Observed large Trad fluctuations predominately due to
changes in B-X-O transmission efficiency

• Trad fluctuates  > 30% for all
frequencies

• Microwave edge reflectometer
used to measure ne profile
– Measured Ln fluctuates from 1 cm

to 6 cm

• Theoretical CB-X-O computed
using measured Ln values
– Varies as ~

• Fluctuation levels of Trad (30%)
and CB-X-O (20%) comparable
! 

e
L
n

Maximum Trad used to calculate
measured CB-X-O
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Initial H-mode EBE measurements exhibited decay in
measured Trad during H-mode phase

• Emission decays after L-H
transition
– Observed for fce, 2fce and

3fce emission
– Emission location remains

constant during discharge

• Leads to CB-X-O ~ 0% during
H-mode
– Low emission levels prohibit

Te(R,t) measurements

• EBW collisional damping
suggested as explanation of
measured Trad evolution
– Damping becomes significant

for Te < 30 eV at or inside the
UHR layer
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EBE simulations suggest low H-mode EBE due to EBW
collisional damping

• MC layer moves outside LCFS
after L-H transition
– Te < 20 eV outside LCFS

• EBE simulations with
collisional damping predict
Trad decay during H-mode

• Relative collision frequency
increases after L-H transition:
– Peak υei/ω increases from

5x10-5 to 1.2x10-4

• Damped EBW power
increases from 20-40% in the
L-mode phase to 70-90%
during H-mode
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LIThium EvaporatoR (LITER) provides edge
conditioning tool for NSTX

LCFS

RMCRMC

0 mg/min Li
19 mg/min Li

LCFS

RMCRMC

• Improvement in edge ne and Te with LITER may
be important for B-X-O coupling
– Coupling depends on Ln and Te

• Li conditioning:
– Increases Te at MC layer
– Decreases ne outside LCFS

• Reduction in edge ne moves MC layer to LCFS
where Te ~ 20 eV
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H-mode CB-X-O increased with Li edge conditioning

• Measured Trad increased from
~ 50 eV to ~ 400 eV
– 18 GHz emission from near

plasma axis

• CB-X-O increased with Li
conditioning:
– From 10%      60% for fce=18 GHz
– From 20%      50% for 2fce=28 GHz

• Control of edge conditions
provides good coupling to EBW

Increased B-X-O coupling allows for
more robust conditions for Te(R,t)
measurements

f = 18 GHz

11
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Angle of maximum B-X-O transmission consistent with
theory in H-mode plasmas

• Repeated target plasma, (Ip =0.9 MA,
Te(0)~1keV) with Li conditioning

• Maximum measured CB-X-O:
– 62±15% for fce=18 GHz near axis emission
– 49±15% for 2fce=28 GHz near axis emission

• Measured and predicted angle of peak
emission consistent in L-mode as well

Predicted 
CB-X-O
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Trad maximum at Zaxis ~ 0, in agreement with simulations

• Target H-mode plasma:
Ip=0.8 MA, Te(0)=0.8 keV,
ne(0)=3x1019 m-3

• Vertical position scanned
from -2 to 11 cm

• Drop in measured Trad
coincides with increase in
Zaxis

• Measured and simulated
Trad agree during Zaxis scan

2fce=28 GHz

Measured Sim.

13
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EBE simulation of Zaxis scan suggests increase in
Doppler broadening
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• Prior to Zaxis increase,
emission originates near
axis (R=1 m)

• At maximum Zaxis, Remission
shifts out to R=1.4 m

• Simulations show increase
N|| with Zaxis
– Leads to increase in Doppler

broadening

    Doppler broadening
restricts access to core
Te measurements
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Lithium edge conditioning provides good target
H-mode plasma for Te(R,t) measurements

• Lithium edge conditioning reduced
collisional losses to < 20%

• EBE simulation calculates CB-X-O
and ray emission location
– Code accounts for losses due

to re-absorption, re-emission &
collisional damping

– Emission location determined by
weighted-average emission
location of the simulated 41 rays

• Te from EBE diagnostic computed by:

• Edge EBE simulations more accurate because rays travel through
less plasmas
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Non-localization of Te(R) measurements from EBE
diagnostic due to multi-harmonic emission

• Harmonic overlap in ST
occurs from high toroidicity
– Accurate simulations very

important

• Finite size of beam can lead
to non-localized
measurements
– Spread in emission location

due to Doppler broadening
– Diagnostic sensitive to

emission from multiple
harmonics

• Need detailed edge
measurements to accurately
model EBE process

Radiometer range

! 

{
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EBE based Te(R,t) measurements in the ST are
challenging

• Local Te equal to Trad from EBE measurements provided
CB-X-O ~ 100%
– Coincidence of X- and O-mode cutoffs required for CB-X-O = 100%

• Reconstruction of Te(R) profile is difficult in the ST
– Rapid fluctuations in edge Ln lead to > 20% fluctuations in CB-X-O
– EBW collisional damping in H-mode can quench low harmonic EBE
– Non-optimal plasma vertical position restricts core Te(R) measurements
– Requires knowledge of actual magnetic configuration which is strongly

varied by large internal currents

• Te(R) reconstruction of NSTX H-mode plasma shows
agreement with edge Te from Thomson
– Larger disagreement with central Te occurs where Doppler broadening

and harmonic overlap effects are increased
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Supporting Slide
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Lens optimization provides minimal beam waist

• 8-18 GHz antenna
– 20 cm focal length lens provides beam

waist of 10 cm at plasma edge (50 cm in
front of the antenna) for 16.5 GHz

– Focal length ~10 cm for microwaves

• 18-40 GHz antenna
– 25 cm focal length lens provides beam

waist of 6.5 cm at plasma edge for
28 GHz

– Focal length ~12.5 cm for microwaves

Allows for localized measurements
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Dicke switching method provides
absolute calibration

• Antenna assembly viewed blackbody source (LN2 cooled
Eccosorb) through chopper wheel

• Blackbody emission signal from antenna fed into radiometer
tuned to a particular frequency

• Radiometer yields an
output voltage
proportional to input
intensity
– Vout=G(f)Trad
– G(f) is a frequency

dependent gain
factor (V/eV)

• All vacuum windows, lenses, antennas, and cables used in
the experiment included in calibrations
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Antenna steering scan provides good coverage
of B-X-O window

! 
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EBW
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Predicted B-X-O
transmission efficiency

He L-mode

• Repeated target helium L-mode plasma (Ip=0.8 MA,
Te(0)=1.5 keV, ne(0)=3x1019 m-3)
– Moved EBE antennas to new position between shots

• Experimental B-X-O transmission efficiency:

• Maximum measured
transmission efficiencies:
– 90% for fce=15.5 GHz
– 40% for 2fce=25 GHz

• Predicted transmission only
accurate for MC layer; EBWs
may be re-absorbed and re-emitted before MC



22

EBE simulations indicate increase in υei near
MC results in significant loss in ray intensity

• High emission (t <0.2 s):
– υei/ω ~ 3x10-5

– Ray intensity decreased by
40% in edge

• Low emission (t >0.2 s):
– υei/ω ~ 1.2x10-4

– Ray intensity decreased by
80% in edge

   Edge Li conditioning may
reduce edge collisionality
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Better Trad agreement with EBE simulation in
19 mg/min Li conditioned plasma

    Trad (measured)
Trad (sim., no collisions)
Trad (sim., with collisions)

• For highest Li evaporation
rate, 19 mg/min:
– Measured Trad~0.4 keV
– Simulated Trad~0.6 keV

• For 0 mg/min:
– Measured Trad~0.1 keV
– Simulated Trad ~0.4 keV

fce=18 GHz

fce=18 GHz 0 mg/min

19 mg/min

Control of edge conditions
allows for good coupling to EBW



24

Good agreement between measured and
simulated Trad in H-mode

 Trad (measured)
Trad (sim., no collisions)
Trad (sim., with collisions)

• Simulated & measured Trad
– 0.6 keV for fce=18 GHz
– 0.4 keV for 2fce=28 GHz

• Low EBW collisional damping
observed during H-mode scan

31

fce=18 GHz

2fce=28 GHz
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