Discussion of XP 835 HHFW Heating and CD Phase scans in NB Deuterium H-mode plasmas

Phil Ryan, Joel Hosea

R. Bell, L. Delgado-Aparicio, E. F. Jaeger, S. Kubota,B. LeBlanc, F. Levinton, C. K. Philips, S. Sabbaugh,G. Taylor, K. Tritz, J. Wilgen, J.R. Wilson

14 May 2008

Goals of Experiment

- Develop operation techniques for using HHFW in Hmode plasmas.
 - Obtain sufficient loading to couple power without arcing.
 - Handle L-H mode transitions.
 - Handle ELMs (may be future development)
- Determine HHFW power channels in H-mode
 - Edge heating (ions & electrons)
 - Damping on fast beam ions
 - Core electron heating

H-mode conditions in order of anticipated difficulty for HHFW

- HHFW into NBI-established H-mode.
 - Match to constant plasma load.
 - Concerns are low loading, antenna protection
 - Can outer gap be started at ~ 7 cm and moved to ~ 5 cm during Hmode?
 - What is minimum density at which H-mode can be sustained?
- NBI-triggered H-mode in HHFW-heated plasma.
 - L-H mode transition changes plasma load.
 - Time of transition may be predictable.
 - Change array phase to keep load constant or other tricks.
 - Programming gap may be one of other tricks
 - Can H-mode be sustained with HHFW?
- HHFW-driven H-mode
 - Time of L-H transition less predictable
 - Future work

Previous HHFW/H-mode operation

- 2004: XP 413 HHFW and NB (LeBlanc)
 - NBI into HHFW pre-heated plasmas
 - W_{mhd} and neutron rate increases observed
 - Low efficiency
 - HHFW into NBI-driven H-mode plasmas
 - Waves do no seem to reach plasma core
- 2004: XP 425 HHFW-only H-modes (LeBlanc)
 - − $I_p \approx 0.6-0.8$ MA, $B_T \approx 0.45$ T, medium density DND
 - $k_{//}$ = 14 and 7 m⁻¹ at I_p = 0.6 MA, $k_{//}$ = 14 m⁻¹ at I_p = 0.8 MA
- 2008: MP 26 HHFW conditioning in D₂ (Hosea)
 - I_p = 0.65 MA, B_T = 0.55 T, low density LSN, 1.7 MW at -150°
 - 70 kV, 40 ms NB during HHFW RF-sustained H-mode
 - 90 kV, 40 ms NB during HHFW H-mode tripped RF

MP 26: 1 Apr 08 – Coupling to H mode - 70 kV beam

1.7 MW HHFW at -150°

H mode with 70 kV beam

5

MP 26: 1 Apr 08 – Coupling to H mode - 90 kV beam

1.7 MW HHFW at -150°

H mode with 90 kV neutral beam

6

Edge density appears to be pushed away more for higher beam voltage

- Caused by reaction of plasma control to beam?
- Do we need to increase edge density in H mode?

Interaction of NB with antenna is greater at higher NB V (power)

Rho typically increases during H mode

9

Antenna voltage suggests loading decreases during H-mode

 $V = 70 \, kV$

10

Shot List

- Target plasma TBD: D₂, CS feed, 5.5 kG, I_p ~ 0.65-0.8 MA (I_p chosen for MHD stability and beam confinement.)
- Phase 1: HHFW into NBI-driven H-mode
 - Establish minimum NB power for stable H-mode.
 - Begin with NB source A throughout
 - Add NB source B if required for as short a duration as possible and then handoff to HHFW
 - Keep density as low as possible
 - Keep edge density at desired level by adjusting outer gap if possible
 - Outer gap 7 cm, phase -150°, increase RF power until $V_{cube} > 10 \text{ kV}$
 - Outer gap 7 cm, phase -90°, increase RF power until $V_{cube} > 10 \text{ kV}$
 - Repeat above for outer gap of 5 cm
 - Repeat above for outer gap of 7 cm \Rightarrow 5 cm
 - Chose gap that gave best results above, increase beam voltage (to study coupling to fast tail), -90° and -150° phasing.
 - Return to minimum beam voltage, best gap, +150° and +90° phase.
 - Prepare for phase two: turn off NBI and match RF at -150° and -90° in L-mode plasma.

Shot List (continued)

- Phase 2: NBI-triggered, HHFW driven H-mode
 - Set target to that of shot 128155
 - -150° phasing, trigger H-mode with 70 kV, 40 ms beam.
 - Add 90 kV 40 ms pulse for MSE at end of HHFW H-mode phase.
 - If H-mode transition trips RF due to decreased loading, try
 - Programing plasma to move closer to antenna after beam comes on.
 - Switching to -90° phasing (higher loading) during beam.
 - Matching to H-mode loading, tolerate reflected power during L-mode.
 - If H-mode is not sustained even if RF does not trip, increase HHFW during the NBI trigger.
 - Increase NBI power.
 - Repeat with 90 kV, 40 ms beam.
 - Repeat with 90 kV 100 ms beam.
 - Repeat with -90° phasing.

Shot timing

Desired Diagnostics

- Edge reflectometer
- Thomson scattering
- CHERS
- MSE
- FIDA
- NPA
- Soft x-rays
- high-k scattering

backup material

<u>XP413 NBI Pulses into HHFW Heated Plasma</u> Observed W_{mhd} and Neutron (S_n) Increases S_n increase larger than for W_{mhd}

Overlay of HHFW+NBI (solid) and NBI (dash) at 0.193 and 0.293 s

XP413 HHFW into NBI Driven H-mode Plasma

Small Effects On W_{mhd} and Neutron (S_n) Are Reproducible Seem more compatible with edge effects than heating

Overlay of HHFW+NBI (solid) and NBI (dash) at 0.293 and 0.393 s

XP413 NBI into Preheated Plasma with HHFW

XP425 HHFW H-mode at 0.7 MA

HHFW with beam blips, $k_{//} = 14 \text{ m}^{-1}$, 1.5 MW

XP425 HHFW Driven H-mode at 0.8 MA

HHFW only, $k_{//} = 14 \ m^{-1}$, 2.0 MW

