Supported by

Fusion Energy

Effect of Pitch Angle on MHD-induced Energetic Ion Redistribution or Loss by Neutral Particle Analyzer Vertical Scanning

S. S. Medley

Princeton Plasma Physics Laboratory, Princeton, NJ 08543

NSTX 2008 XP Proposal 'Lite'

Columbia U Comp-X **General Atomics** INEL **Johns Hopkins** U LANL LLNL Lodestar MIT **Nova Photonics** NYU ORNL PPPL PSI SNL UC Davis UC Irvine UCLA UCSD **U** Maryland **U New Mexico U** Rochester **U** Washington **U Wisconsin** Culham Sci Ctr Hiroshima U HIST Kyushu Tokai U Niigata U Tsukuba U **U** Tokyo JAEA loffe Inst TRINITI **KBSI** KAIST ENEA, Frascati CEA, Cadarache **IPP, Jülich IPP**, Garching **U** Quebec

Office of

Science

VSTX

• The line-integrated NPA measurements (left panel) are 'localized' in pitch and space by intersection with the beam NB footprint (right panel). Radial resolution is ~ 20 cm due to footprint width.

XP-707 Vertical Scan Discharge Characteristics: 122631

 $- \bigcirc NSTX$

• H-mode with Ip = 1 MA, B_T = 4.5 kG A, B, C @ 90 keV and P_{NB} = 6 MW.

• TRANSP-calculated neutrons ~ 1.5x measured.

• Stable outer gap ~ 10 cm early in discharge and $n_e(r)$ 'flattop' at t > 0.5 s (i.e. no 'faux' depletion effects).

 Strong energetic ion depletion above E/2 after Hmode onset at t ~ 0.2 s.

• High f ~ 400-1000 kHz modes existed during the discharge but with $\delta B_{Low} / \delta B_{High} \sim 40$.

Proposed XP-8^{**} Addresses NPA Vertically Scanning Measurement of MHD-induced Energetic Ion Redistribution at Reduced Field Pitch: v_{II}/v ~ 0.47 ± 0.03.

Proposed XP-8** Also Addresses NPA Vertically Scanning Measurement of Energetic Ion Redistribution during MHD "Quiescent" Phase - e.g. SN125329.

MPTS and CHERS Data for SN125329 - a Rare 'Low-f Quiescent' H-mode Discharge

• Collapse of v_{Φ} at t ~ 0.55 s coincides with ramp-up of carbon-dominated Z_{eff} and N_e . • Electron temperature profile is broad, $T_e(0) \sim T_i(0) \sim 1 \text{ keV \& S}_n \sim 1/Z_{eff} @ t > 0.55 \text{ s}.$

Run Plan Details

<u>Shot Number</u>	<u>Vertical Angle (degrees)</u>	
1	0	
2	3.0	
3	6.0	
4	9.0	
5	12.0	
6	15.0	
7	18.0	
8	20.0	
9	17.5	
10	13.5	
11	10.5	
12	7.5	
13	4.5	
14	1.5	

Machine: $4.5 \text{ kG}, 1.0 \text{ MA}, n_e(0) \sim 6x10^{13} \text{ cm}^{-3}, \text{GDC}$ between shots, no Lithium contaminationBeams:Sources A, B, C @ 90 keV deuteriumDiagnostics:Magnetics for EFIT equilibria, full kinetic diagnostics and sFLIP data.

NSTX

Run Plan Details: "Quiescent" Transition?

SN125329 Exhibits Large Ne Fluctuations at r/a > 0.5

rplot generated by medley on 11-Dec-2007 07:48:43

NSTX