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Advances Iin EC Technology and Physics Enhance

the Prospects for Steady-state Fusion Energy

Fundamental assumption:
A steady-state fusion energy source is very attractive

= Advances in source and transmission line technology give
high confidence that EC systems can deliver power in the

power plant environment at high power density
— Minimal impact on magnet design
— Minimal impact on blanket/shielding

= Experiments have validated that ECH/ECCD provides
essential and often unique capabiliities to facilitate
steady-state operation
— Access to relevant conditions
— Sustaining the desired operating conditions
— Control of the operating point
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Ray Tracing Provides An Adequate Description of

EC Wave Propagation and Absorption

< Modulation analysis shows the expected response to a mixed
polarization beam with weak absorption
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ECCD Has Been Unequivocally Demonstrated

TCV
= ECCD has been observed on 100 , , , ,
many fusion devices % Ip [kA] ; ; 15962
— Example shown from the TCV i 3 3 Vv
tokamak shows sustainment of soll H 1.0 MW CO ECCD Power \ |
the total plasma current by Tor [KAl :
ECCD and bootstrap current 1B\ o AR e e,
— To maintain constant current 12\, o - -
the inductive transformer must LL R S S R D
induce negative current, ’ ! ! !
iIndicating overdrive by the
non-inductive currents
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ECCD Theory Has Been Validated by Experiment

- Measured driven current agrees ~ DIlI-D 5, 0-D validation
well with theory when a full WE Y
Fokker-Planck treatment with :
parallel electric field effects are
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Two Complementary Approaches to

Steady-State Magnetic Fusion Are Being Pursued

Both schemes apply a strong external
toroidal field for good confinement:

= Stellarator achieves equilibrium with

3-D magnets

— Magnetic configuration is inherently
steady-state

— Confinement reduced due to loss of
axial symmetry

— Stellarator research is studying “quasi- , Ohmic
symmetry” to improve confinement while Jransformer
maintaining steady state capability

Vertical
field coils

< Tokamak uses plasma current to achieve
equilibrium with axial symmetry P Toroidal
— Good confinement, but inductive
current drive precludes steady state
— Non-inductive current generation is
essential for steady-state operation
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Stellarator Requirements for Steady State

< Accessing the steady-state regime
— Plasma startup
— Heating to burn
— Hmode?

= Sustaining the steady-state regime
— Community vision is ighited operation, so no external power is
needed to sustain the plasma

< Control of the operating point
— Key issue may be assuring the magnetic configuration
matches the design of the structures in the vessel that handle
the heat and patrticle fluxes
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Tokamak Requirements for Steady State

< Accessing the steady-state regime
— Plasma startup
— Heating to burn
— H mode access
— Formation of the required current profile

= Sustaining the steady-state regime
— Fully non-inductive operation Requires flexible current drive
— Stable operating point location and magnitude

= Control of the operating point

— Impurity accumulation
— Instability control
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Outline

< Accessing the steady-state regime
= Sustaining the steady-state regime

= Control of the operating point

= Prospects for steady-state operation on future devices
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Outline

< Accessing the steady-state regime
e Sustaining the steady-state regime

e Control of the operating point

= Prospects for steady-state operation on future devices
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Plasma Startup With EC In Stellarators Is Routine

< Vacuum magnetic

configuration confines TI-II
plasma, but plasma . |

must be made ﬁ \ Npar—030 @
~ Not obvious that EC e e

absorption on neutral
gas and low density
plasma would be
sufficient for burning
through the radiation
barrier

Il
JI

= Startup results show 20
strong dependence on
n, as expected fromEC
absorption
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EC Startup Assist Is Essential for

Superconducting Tokamaks

= Steady-state tokamaks will likely have KSTAR

superconducting magnets

— Superconducting magnets limit the
voltage that can be generated by the

central solenoid

— Blankets and shielding further decrease
the peak voltage induced

— Limits on wall conditioning techniques to
clean the first wall further complicate

startup

= EC startup assist allows robust and
reproducible initiation of the plasma

— Pre-ionization

— Burnthrough the impurity radiation
barrier
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Heating Effectiveness With EC Waves Is Comparable

To That With Neutral Beams

1.0+

| T rreing
Alcator C-Mod
ASDEX

< Neutral beam heating has higher
global confinement due to the
fast ion content

< Thermal confinement scaling is in
better agreement
— Example here is FT-U L-mode data
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plotted over the ITER database : . FTU
compared to the ITER-97L scaling : R2-0.97
_ _ o - RMSE=15.8%
e Heating comparisons in high
performance plasmas are limited 00— kT,
due to lack of high power EC TE thcaling  (5)
systems |

Burning plasmas heated by
o particles will be similar to

EC heated plasmas

= demonstration needed in

present-day experiments
TC Luce/EC-16 Conf/Apr 2010

— NBI heated high performance
plasmas have enhanced
confinementdue to T,> T, and
strong rotation



Access to H Mode with ECH Is Similar To NBl Heating

H mode confinement is
required for steady-state
tokamak scenarios
— ECH can be applied in a
wider variety of conditions
than other auxiliary
heating methods

Access to H mode in
tokamaks is characterized
by a power threshold

At comparable densities,
no difference in power
threshold is observed
between ECH and NBI
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Stellarators Also Have Accessed H Mode with ECH

e Confinement improvement for
stellarators is highly desirable

WVII-AS

— Non-axisymmetry intrinsic to
stellarators leads to reduced

confinement relative to similar
sized tokamaks

# 19675

e H mode behavior in stellarators

Is similar to tokamaks 4 -
— Stored energy and density 5.
Increase

[ndl (101¥m2)

— ELM-free regimes have impurity o
accumulation

— ELMing regimes will have the
same issues as tokamaks .

140 GHz

= Access is not characterized by 0
a power threshold
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Multiple EC Systems Allow Control of

Multiple Variable Quantities Such as Profile Shape

= Control of the
temperature profile

during the current p~02
formation phase may p~0>
be needed to access TCV  Closed-loop case
' 19 , . . .
— as]
current profile = 7t —
measurements, the  — 16f —— cstimatc
resistivity profile may E - St = ———
be a suitable proxy 175} ! ——— estimate
Qs:') Y e reference
% 17 | Morl -
= ; h hl T i Aadl \ PR T T
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successful due to wob—— 4 ___ Gyrotron power -
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.. -z i |Cluster A (p, =0.2
efficient model of the 200 odl
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Feedback Control of q(0) Is Possible with

Real-Time g Measurements and ECH

< Access to steady-state DIII-D
scenarios requires forming |
the desired q profile
before start of burn 2l

— Hot plasma during burn
precludes modification of

122579 122580 122581

—

[#%]

the g profile i
. . i , Mini
— ECH is the ideal tool / oy i E"Eﬁ%ﬂﬁ‘:fﬁ M.
i U P— ul e o ke "N o . L b
because other heating _ . .

schemes have limitations
during the current rise

End of current ]
ramp -

- Example shown is single- B
Input single-actuator ?
control 3f

— More sophisticated MIMO
and model-based _
feedback schemes are 1L -

under development Time (ms)
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Outline

e Accessing the steady-state regime
= Sustaining the steady-state regime

e Control of the operating point

= Prospects for steady-state operation on future devices
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High Bootstrap Current Fraction Is Needed To

Reduce The Recirculating Power Fraction

= Electron cyclotron current drive efficiencies under fusion conditions
yield yop < 0.05 A/W

< Recirculating power fraction is given by:
- 1:recirc = I:)CDe / I:)plant, where I:)CDe = (ICD /YCD) / Ne
- TakeI.p =125 MAandn,=0.5
— For Pyt = 1000 MWe, the recirculating power fraction f
=> much too high for a practical power plant

= 50%

recirc

- To make the target of f
2.9:

— Increase in y- => higher T/n, which means lower density at fixed £
Unattractive due to smaller increase in the fusion power with
temperature and additional stress on the solution to handle heat
and patrticle flux at the boundary

recirc — < 20%, it Is necessary to find a factor of

or
— Reduction in the demand for external current drive = higher
bootstrap current fraction
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Bootstrap Current Profile Depends On Transport

Which Depends On the Total Current Profile
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Steady-state Tokamak Operation Requires

Sustaining the Plasma Current Non-inductively

Inductive

i
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= EC system plays two key roles:

0.0

0.2

04 06
Radius p

— Driving ~10% of the total current where other current drive

sources do not

— Varying position to optimize ideal and resistive stability
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Optimization of ECCD Location and Deposition Profile

Leads to Operation at Higher Pressure

All cases stable Only broad deposition case
at y=3.2 Is stable at B=3.4 DIII-D
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Predictive model of resistive stability and the effects of ECCD on it
IS needed to optimize steady state scenarios
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Outline

e Accessing the steady-state regime
e Sustaining the steady-state regime

= Control of the operating point

= Prospects for steady-state operation on future devices
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Stellarator Divertor Solutions May Require

Careful Control of the Edge Rotational Transform

iota evolution \\/7-X Simulation iota evolution

[ | | | | [ | | | |
vacuum iota ses |

e Confinementina 1}
shearless stellarator

vacuum iota we

0.9

optimizes near a low- o
. 09 ©

order rational 0.8 60 & |
i 26 +
— Divertor solutions take o | . 110 e

advantage of this to 0 01 02 03 04 05
expand the flux with fort, M

the nearby vacuum I, = 43 KA
Island

— Small changes in the
edge rotational
transform can affect
the plasma boundary
strongly

e Compensation with
ECCD is possible
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Bootstrap Current Compensation By ECCD

Has Been Demonstrated

= All cases have ~10 kA of bootstrap o VlVV.II—AS.
current = 13 . |
. L
= Scan of the injection angle parallel S -
to the field lines varies the amount S 1 ; ;
of ECCD for fixed power i :
—.2 5 |
= |Inductive current is applied to yield < — | -
no net current 20 | =0 |
N A TR
10e® * 8,
= When no inductive current is - 0f------ ot
applied, then the bootstrap current . o
is compensated by ECCD ool os o7 i
20 0 20

TC Luce/EC-16 Conf/Apr 2010 Pinj



Intense Central Heating Counteracts the Effects of

Metallic Impurity Accumulation

< Power plants are likely to
have a metallic first wall

— Neoclassical impurity
transport yields very peaked

impurity density (n, « n_?)
— High Z impurities can radiate AUG

intensely in power plant

conditions 2T B i i i —
: . 2.2f ol i , :
= Cental EC heating mitigates ; pol,angle ECRH {a.) 3
the effects of W accumulation so—— ’ i
— Physics mechanism still Lap ‘\* ¢ (W) (107) )
_ R e N
unclear: il St R ==
1'0: /r |
- Support power balance . Wstrongly 7. prT
against radiation? siE..q 1CTEASes e ) |
e Enhanced particle flux? 0f - ' — ' f :
. : | T NBI(MW) | ]
_ 51 | | |
Same spatial dependence : ;[ EcRHW WH

seen for radial shift of heating ° : : : ; . : -
Time (s)
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Localization and Control of the ECCD Deposition

Allows Feedback Control of Instabilities

e Scan of the relative
location of the ECCD
and the sawtooth

Inversion radius shows a ~2

clear plasma response

~ Plasma has two distinct @

states
— ECCD location

determined by change 2 50

in aiming

Tore Supra Open-loop case

ofaxsTe i L )

L. — L
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Sawtooth period
*  #40941
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Localization and Control of the ECCD Deposition

Allows Feedback Control of Instabilities

e Scan of the relative

location of the ECCD Tore Supra Clolsed—lcl)op Cgse
and the sawtooth = 2 W —
inversion radius showsa = 0.2~ Ecw p\—\w,. | | | |
clear plasma response o 0.3 ﬂ%
— Plasma has two distinct 0.2 Fsawtootn inversion radius . , , ,
states > /4 - Central and
_ 2 0 1O aXISTe et
— ECCD location I—————t - | | -
determined by change 100 sawtooth period -~ measured —— Request |
in aiming 2 50 we AR "5
Aemldled — e T
= Proportional-integral o +50 - a ‘ e al
controller successfully & -50 WW’\/
switches the plasma : Achieved poloidalangle’\ ===
~ PID out ut =
between the two states 10 | B
— Latency largely due to 3 4 5 6 7 3 9
response time of aiming  #40958 Time (s)

hardware
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Stablilization of Tearing Instabilities With Techniques

Relevant to Power Plants Has Been Demonstrated

< Proof of principle had 30 J1-60U Ip=1.5MA, Bt=3.7T, q95=3.9
been demonstrated . N ]

previously . EC(~3MW)

— Key advance here is
automatic detection and

control of the deposition

IBl[arb.] Png[MW]
—~0

0 O

= Critical technology for
prevention of disruptions in
tokamaks
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number _,
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[
T erable E‘
0 ' o §43
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i / ] <3 44 . | : . Ifiefererlice
e 6 7 8 9 10 11
2 3 |4 Rm time[s]
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ECH/ECCD Can Affect Plasma Transport In

Advanced Scenarios

e ECH reduces the strength of an
lon internal transport barrier
— Likely not due to change in
current profile--same result for
ECH/ECCD, independent of
location, time scale too fast

- Effect appears to be due to a b
change in the transport EC Resonance 5 74 745 75 755
prOpertleS Location —0—022

— lon energy transport enhanced \; —— 0%
-1 )—v—g.ég

- Momentum transport affected

— Electron heating depends on 0
resonance location g -
>

— Large spatial extent of the
transport change leads to
speculation of a large scale

correlation o
73 735 7.4 745 7.5 71.55
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Outline

e Accessing the steady-state regime
e Sustaining the steady-state regime

e Control of the operating point

= Prospects for steady-state operation on future devices
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Prospects for Steady-State Operation With EC

= Simple calculations show that EC will be useful in burning plasma
regimes

— B =5% implies the density will be below the O mode cutoff value if
<T>> 6 keV

= The primary physics objectives of ITER include steady-state
operation with Q=5

— ITER will be a critical demonstration of the necessity of EC power

= Reactor designs have favored lower hybrid current drive due to
the high efficiency; however,

— Difficult to control the radial deposition to compensate for the actual
bootstrap current profile determined by the transport

— High pedestal temperature needed for high bootstrap current
fraction and stability makes LH waves damp very close to the edge

-> Need to reconsider EC waves
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Prospects for Using EC In

ITER Steady State Scenarios Are Good

ITER Simulation

< Role of EC_CD IS to supply Day-1 heating mix:
current drive near the half Pus = 33 MW, P.. = 20 MW,
radius Pic = 20 MW
- Unfortunately the ITEREC
sgste”rgalliiggt optimized for this By=29 H=14 fos = 0.57
PP Gos =50 1o =0.91 Q=46
. : 40 5
= Significant upgrades in power 20! T(keV) a x(m2s).
and launcher capabillity are > K
possible in the lifetime of ITER f?x."“ Ye
— Launchers could be optimized e obal -
for steady-state operation if AT T qame)] © |
preliminary experiments are
promising

ONETWO Simulation 00 02 04r/a06 0.8 1000 0.2 04r/306 0.8 1.0
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Prospects for Using EC In

ITER Steady State Scenarios Are Good

e Steady state scenarios with ITB also
benefit from ECCD

— ECCD triggers the ITB
— ECCD location fixes the ITB foot

e Scenario requires NO current drive
Inside the ITB

— Implies no NBI
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summary

e EC heating and current drive physics has been validated to an
Impressive level

< EC applications required for steady-state operation are
demonstrated, often on multiple experiments

< Heating and current drive by EC waves have significant
advantages in the power plant environment

— High power density = low impact on blankets and shielding
— Remote launching and steering = low impact on magnet design

=> Heating and current drive with EC waves is a key enabling tool for
steady-state generation of fusion power
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