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Tokamak Requirements for Steady State

< Accessing the steady-state regime
— Plasma startup
— Heating to burn
— H mode access
— Formation of the required current profile

= Sustaining the steady-state regime
— Fully non-inductive operation Requires flexible current drive
— Stable operating point location and magnitude

= Control of the operating point

— Impurity accumulation
— Instability control

TC Luce/EC-16 Conf/Apr 2010



Preionization and startup

* Preionization and startup are very robust for fundamental

— Only issue is power requirement for burnthrough, which
depends on vacuum conditions

e Second harmonic is an issue for superconducting
tokamaks

— EAST and KSTAR need second harmonic breakdown o
make use of available EC power

— ITER needs it for half-field operation
— clear statement of power requirement elusive
e Active research program



http://www.nfri.re.kr

:'-" Scanned parameters for 110 GHz ECHN= |

* Pre-ionization (without ohmic discharge)
— Pre-fill gas pressure
— Toroidal injection angle
— Injection mode
— Vertical magnetic field

« Plasma startup (with ohmic discharge)

— Pre-fill gas pressure
— B, at the EC resonance
— Additional gas puff in pre-ionization phase

« EC heating effect
— With/without EC beam

16 National Fusion Research Institute



::- Pre-ionization — EC wave mode NFRI
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= Pre-ionization — Toroidal injection anglé- 2|

tp://www.nfri.re.kr

0°: #1949 ECH power [kW] 250 kW
-10° (counter): #1948
-20° (counter): #1950 Pre-ionization time
[ms]

36.98 (#1949)
34.17 (#1948)
37.06 (#1950)

ECH on-time [ms] -50

Resonance position

Resonance field [T]

ECH beam target
position [m]

Gas pressure [10°
mbar]

D2 gas, 1.25

- The counter oblique EC beam launch was most
favorable for the pre-ionization and burn-through
during KSTAR first plasma campaign.

- Breakdown delay time was minimized at the toroidal
injection angle of -10 degree. But the line integrated
electron density at the perpendicular injection was
more increased than at the toroidal injection angle of -
10 degree.

0.00 0.05 ; - In the case of the injection angles of -20°, ECH pre
Time (s) ionization was also observed. '

National Fusion Research Institute




ECH startup seen by fast camera in C" light
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Plasma breakdown studies with O1 and X2 W
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Plasma heating by ECH to desired operating

point and access to H-mode

 Not much experimental work on physics of ECH and ECCD
reported—sign of success

— agreement or disagreement with full wave code still not
resolved

* Very significant effects of ECH on transport
— eg, ‘density pumpout’
e Not a universal phenomenon
e needs systematic multi-machine study

e complicates statements about confinement, H-mode
power threshold, etc



irfm

Project objectives =9

* To define the physics requirements of an ECRH system
— with respect to the main JET scenarios

— with respect to the main functions
— taking into account priorities of the JET programme

* To assess the feasibility of an ECRH system
— with respect to time
— with respect to resources (cost and manpower)
— with respect to the present JET layout (ports, buildings)
— with respect to risks
— in coherence with the future JET programme

» Main boundary conditions
— time: system ready by ~2014/2015
— power: ~ 10 MW in the plasma
— strategy: strong synergy with ITER ECCD system development;
partnership with Russian Federation

EC16 - Sanya (China) G. Giruzzi 12/4/2010 5



Intense Central Heating Counteracts the Effects of

Metallic Impurity Accumulation

< Power plants are likely to
have a metallic first wall

— Neoclassical impurity
transport yields very peaked

impurity density (n, « n_?)
— High Z impurities can radiate AUG

intensely in power plant

conditions 2T B i i i —
: . 2.2f ol i , :
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Turbulent transport experiment with modulated gyrotrons
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* ECH heating at p=0.6 and 0.7

* Total injected power constant

* Injection 180° out of phase at two locations
* Rock the T_gradient periodically

* Use time correlation analysis

Absorption at p=0.7
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Doppler backscatter spectrum during periodic

rocking of the T_ gradient at constant rf p
137323, channe}: dbe1a, log scals of (quadrg

f (kHz)
Fluctuation amplitude

Bma (msec)
shot 137323, Point: dbe1a, tims history of amplituds at f=500.3 kHz
_ nzef 3
3 ozef 'HH 'L ]\ I '-EI time history
o2 ML Nl g of sookHz
o YRR T W \WNNTE
FonE 'H'N T W/ VI ampiitude
< oasf 3
2000 2100 200 2300
B T T Sap—m—
shot 137323, ech
51 rf power from one
SEWE g -
@ 4z o of the p=0.6
& apuf 4 gyrotrons
T zrw T~
v 1 Maximuma/L,,

2000 2100 200
s (masc)
Thadn B 10574 OO VI B tedes Mffte 32764, fsmoothe 10,0000 kHz

heating phase

Fluctuation amplitude increases and frequency
decreases during the period of steeper gradients




New modes of operation

Central X2 heating at densities above 7E19 m=3 requires
- 140 GHzand 245 T<B,;<2.65T

- |, <=1 MA to stay below cutoff-density

- gos > 4.5 for lowest o

- limitations are more severe if d is increased

X3 heating allows to lower B,
O2 heating allows to access higher densities / higher |,
For both: see Poster by H. H6hnle

Need to find ways to handle non-absorbed power

16t Joint Workshop on ECE and ECRH, 11.-15 April 2010
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P ., for ECH in Deuterium is significantly smaller than that

in NBl H-mode
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* Difference in P,
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e Large Type 1 ELMs in ECH phase, quite
different than in NBI phase
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Sustainment of the steady-state regime

e Fully noninductive operation for tokamaks

— steady-state for tokamaks requires high CD efficiency as
well as high bootstrap fraction

— Nno ‘new physics’ on the horizon

e Controlling instabilities
— sawteeth
— disruptions
— tfearing modes



Non-inductive Current Sustainment (FY2009)
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Effect of 10 MW ECCD L
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Mitigation of high- 3 disruptions W
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Heating just inside the g=1 surface
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*Off-axis heating just inside

g=1 surface can destabilize the

sawtooth

*Heating just near or outside
g=1 surface can stabilize the
sawtooth.

Sawtooth Control with ECRH on HL-2A

Destabilization of sawtooth
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*Off-axis heating near q=2 surface
can stabilize the m=2 tearing mode

*With tearing mode stabilization, the
plasma density as well as stored
energy keep increase.

M Further study will focus on NTM
stabilization with ECCD/ECRH.




METHODOLOGY

ON-AXIS ECH - 1 - 3 gyrotrons 140 GHz, power 0.2 - 1.2 MW,

In addition OFF-AXIS ECH - 1 — 2 gyrotrons 129 GHz, up to 0.8 MW.

All launches — across the magnetic field. This method allows to get discharges both with single
driving modes (m/n=1/1) and with family of modes (m/n=1/1, 3/2, 2/1, 3/1) by small change of
current penetration to plasma center. At represented examples: B=25 kGs, [,=250 KA,
A,~1.7-10"3cm3, g~ 3.1, column displacement A= -1cm, digitization — 15 ps

DIAGNOSTICS
ECE - 24 channels, 2" resonance X-mode, IF band — 300 or 600 MHz

High space resolution (total angle of the @ Low resolution (angle of the antenna pattern
antenna pattern <19, the inclination angle for [l ~2-3°9, zero angle of the inclination, the
compensation of the relativistic frequency shift @8 resolution — 2-2.5 cm), ECE signals are
~10, the space resolution — no worse 1 cm), § similar to the chord SXR signals,
disturbance motion is nonuniform disturbance motion looks like uniform.

Effect is hidden by averaging at real and




. Mode excitation occurs into all area inside corresponding rational zone

. Mode m/n=1/1 is master mode. Current oscillations on its eigen frequencies fill total
plasma volume

. Measured and calculated by kinetic model eigen frequencies of modes m/n=1/1,
3/2, 2/1 and 3/1 coincide with accuracy no worse £ 10%

. Key parameter for volume resonances of all modes is evidently central ion
temperature

. Only even upper eigen harmonics and odd subharmonics excite. Deviation of eigen
frequencies is not exceed 5% for basic harmonics and 20% for the upper

. Positions of resonance rational zones do not change during current plateau stage
though strong sharpening of electron temperature profile under ECH (inside q=3/2
kprofile sharpening ~1 5)

. Relations of measured eigen frequencies and radii of rational zones can be represent
into 5% accuracy as relation of simple numbers

1 ofl  ofl . fl = (| B
Flajg i Flgp 2 Fly 1 £y = 312 Mo 1 W D g1 1Yy =312

f4 P o, = 2/1 o P Mo, = 1/2

m/n m/n

Positions of rational zones do not depend on amplitudes of oscillations




FF NTM-stabilisation using steerable mirror W
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Reduction of the m/n=3/2 NTM with ECCD poloidal scan

The new electric motor drives for quasi-poloidal scanning of the
ECH rf beams have been demonstrated to permit the reduction of the

8 shot 142650
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