

XP 1017_ext: RF heating at divertor/SOL regions

College W&M Colorado Sch Mines Columbia U Comp-X **General Atomics** INEL **Johns Hopkins U** LANL LLNL Lodestar MIT **Nova Photonics** New York U **Old Dominion U** ORNL **PPPL** PSI Princeton U Purdue U SNI Think Tank. Inc. **UC Davis**

UC Irvine

U Colorado

U Maryland

U Rochester

U Washington U Wisconsin

UCLA

UCSD

J.C. Hosea, PPPL
J-W Ahn², R. E. Bell¹, E. Feibush¹, E. Fredrickson¹,
D. L. Green², R. W. Harvey³, E. F. Jaeger²,
B. P. LeBlanc¹, R. Maingi², C. K. Phillips¹,
L. Roquemore¹, P. M. Ryan², G. Taylor¹, K. Tritz⁴,
E. J. Valeo¹, J. Wilgen², J. R. Wilson¹, et al.

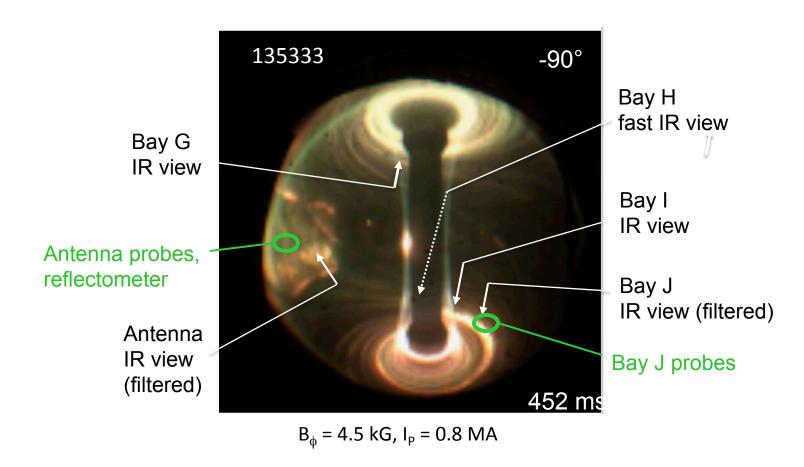
and the NSTX Team

¹Princeton Plasma Physics Laboratory, Princeton, NJ, USA ³Oak Ridge National Laboratory, Oak Ridge, TN, USA ²CompX, Del Mar, CA USA ⁴Johns Hopkins University, Baltimore, MD, USA

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kvushu Tokai U **NIFS** Niigata U **U** Tokyo **JAEA** Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST **POSTECH ASIPP** ENEA, Frascati CEA, Cadarache IPP, Jülich IPP. Garching ASCR, Czech Rep **U** Quebec

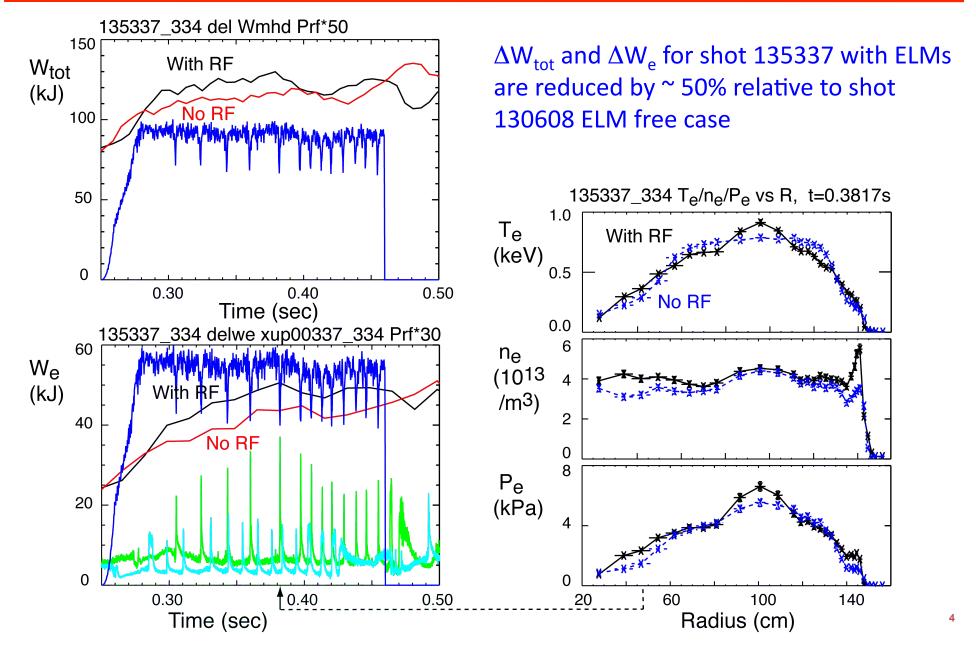
XP Review March, 2011

XP 1017: RF heating at divertor/SOL regions

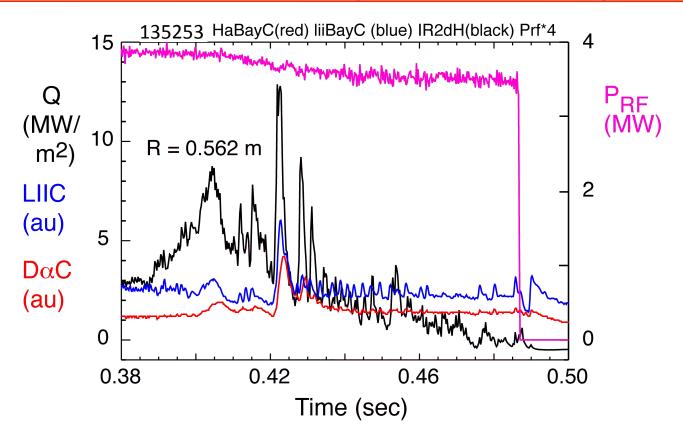

Goals:

- Understand the characteristics of the HHFW edge heating that has been observed in "hot" zones on the outer divertor plates
- Help benchmark edge heating effects in advanced RF heating codes

Objectives:

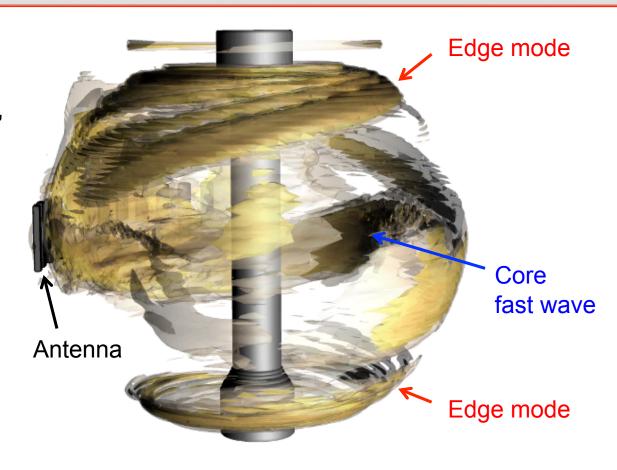

- Probe divertor and antenna hot zones and investigate heating characteristics and processes
 - Divertor hot zones
 - Characterize divertor hot zones with visible and IR cameras, as well as with probes
 - Enhance exploration of hot zone with scans in magnetic field pitch, gapout, and antenna phase
 - Antenna hot zones
 - Characterize antenna hot zones with visible and IR cameras, as well as with probes, reflectometer
- Many additional diagnostics needed to investigate edge heating properties
 - ERD, TS, CHERS, etc.

IR cameras and probes are critical for documenting edge heating



- New IR views of Bay J bottom and of antenna are needed for power deposition measurements
- Field pitch can be varied to pass hot zone over probe at Bay J bottom
- Higher field pitch will permit view of hot zone by fast IR at Bay H

Power coupled to core is affected by ELMs and/or by higher edge density/steeper density gradient


ELM heat deposition at the outer strike radius is very large but effect on density in plasma edge is small

- The Bay H fast IR heat deposition measurement, Q, clearly shows the ELM heat deposition on the lower divertor plate at R = 0.562 m (divertor strike radius)
- Small effect of largest ELM is barely evident on the net RF power
 - ELMs are located away from the antenna
 - Gives opportunity to evaluate RF edge loss without edge density increase during ELMs

AORSA extended to open field lines in the SOL gives edge RF fields – can be benchmarked in HHFW H-mode case

Co-current drive, -90° antenna phasing, $k_{\phi} = -8m^{-1}$

- Initial results suggest edge modes could be cause of RF hot zone.
- Direct link is not yet established and AORSA edge modeling by D. Green et al. is continuing
- Higher current HHFW H-mode case will place RF hot zone in Fast IR camera view