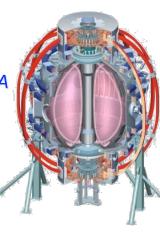


Supported by

, Office of Science


XP 1016_ext: HHFW power coupling vs ELMs

College W&M **Colorado Sch Mines** Columbia U Comp-X **General Atomics** INFI Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** New York U **Old Dominion U** ORNL PPPL PSI Princeton U Purdue U SNI Think Tank, Inc. UC Davis **UC** Irvine UCLA UCSD **U** Colorado U Maryland **U** Rochester **U** Washington **U Wisconsin**

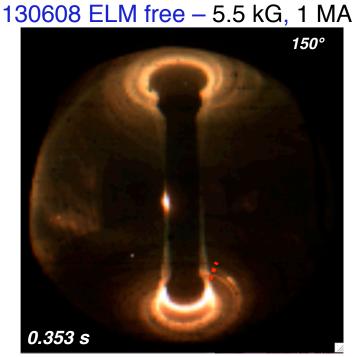
J.C. Hosea, PPPL J-W Ahn², R. E. Bell¹, E. Feibush¹, E. Fredrickson¹, D. L. Green², R. W. Harvey³, E. F. Jaeger², B. P. LeBlanc¹, R. Maingi², C. K. Phillips¹, L. Roquemore¹, P. M. Ryan², G. Taylor¹, K. Tritz⁴, E. J. Valeo¹, J. Wilgen², J. R. Wilson¹, et al. *and the NSTX Team*

¹Princeton Plasma Physics Laboratory, Princeton, NJ, USA ³Oak Ridge National Laboratory, Oak Ridge, TN, USA ²CompX, Del Mar, CA USA ⁴Johns Hopkins University. Baltimore. MD. USA

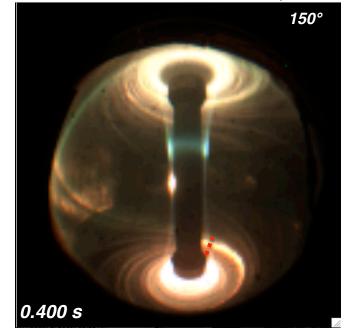
XP Review March, 2011

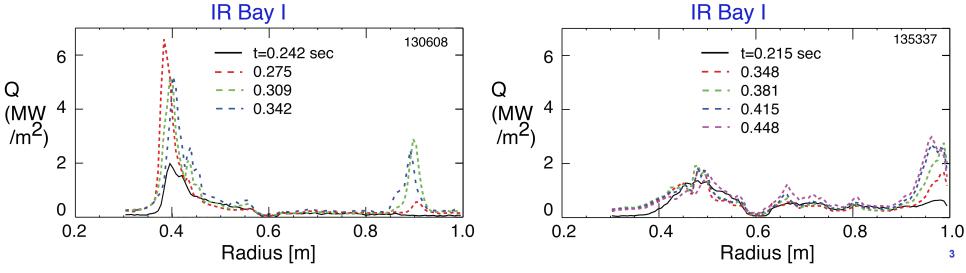
Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA, Frascati CEA, Cadarache **IPP, Jülich IPP, Garching** ASCR, Czech Rep **U** Quebec

XP 1016: HHFW power coupling vs ELMs

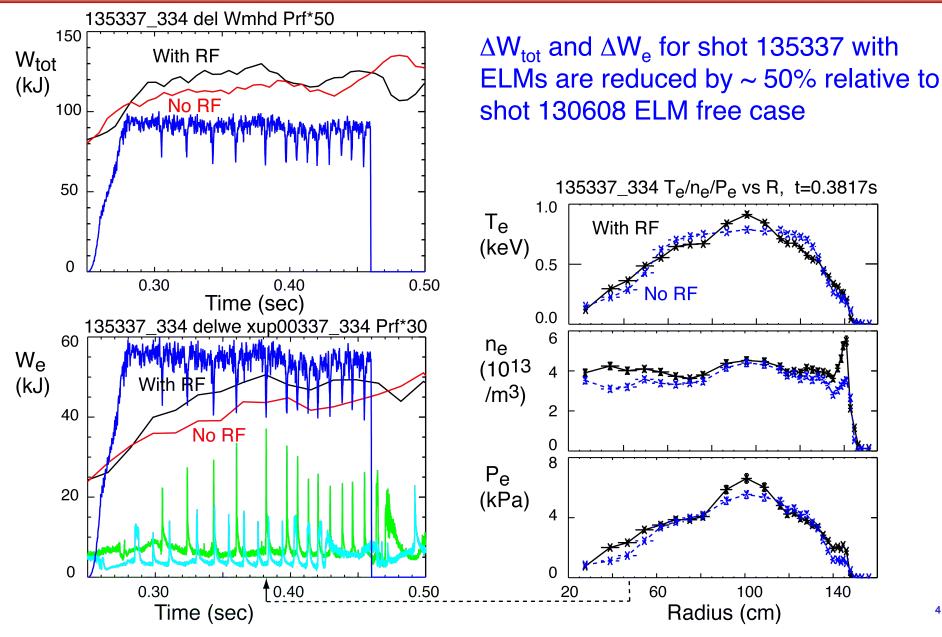

Goals:

- Understand the effect of ELMs on HHFW heating efficiency and edge losses
- Determine if it is acceptable to power through the ELMs with the HHFW system without blanking or diverting the power during the ELM.


Objectives:


- Compare the ELMy H-mode case to the ELM-free H-mode case in deuterium
 - Quantify the effect of ELMs on the HHFW core energy confinement that is dominated by electron confinement
 - Modulate P_{RF} to determine τ_E
 - Determine the effect of ELMs on edge power deposition
 - For edge power deposited in the divertor and on the antenna and for the estimated power loss due to the PDI effect
 - Characterize antenna hot zones with visible and IR cameras, as well as with probes, reflectometer, etc. as for XP 1017
 - ** Of particular importance will be the fast IR data

Heating on outer divertor plate is more intense with ELMs with same field pitch ($P_{RF} = 1.9$ MW)



135337 with ELMs - 4.5 kG, 0.8 MA

Power coupled to core is affected by ELMs and/or by higher edge density/steeper density gradient

IR cameras and probes are critical for documenting effect of ELMs on edge heating

 $B_{\phi} = 4.5 \text{ kG}, I_{P} = 0.8 \text{ MA}$

- New IR views of Bay J bottom and of antenna are needed for power deposition measurements
- Field pitch can be varied to pass hot zone over probe at Bay J bottom
- Higher field pitch will permit view of ELM effect on hot zone by fast IR at Bay H