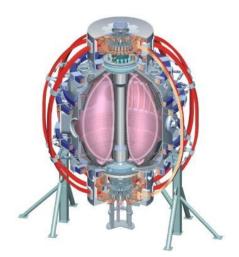


Supported by

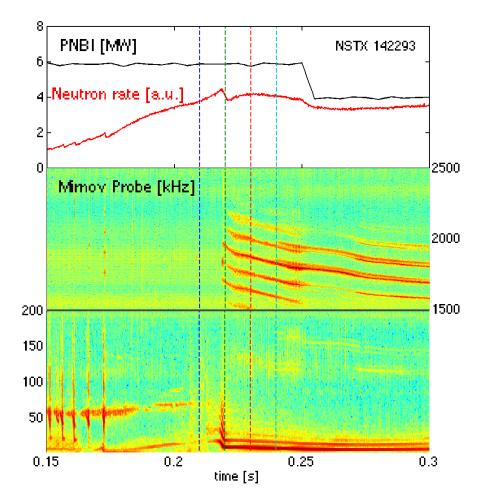


High Frequency CAE & Fast-Ion Redistribution (XP 1170)

A. Bortolon, E. Fredrickson

W. Heidbrink, M.Podesta', ...

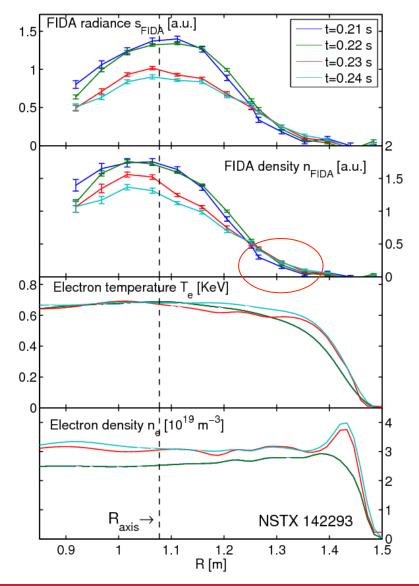
WEP TSG XP review LSB 252 June 9th 2011



Culham Sci Ctr **U St. Andrews** York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **NFRI** KAIST POSTECH ASIPP ENEA. Frascati CEA, Cadarache **IPP, Jülich IPP, Garching** ASCR, Czech Rep

CompX **General Atomics** FIU INL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** New York U ORNL PPPL **Princeton U** Purdue U SNL Think Tank, Inc. UC Davis **UC** Irvine UCLA UCSD **U** Colorado **U Illinois U** Maryland **U** Rochester **U** Washington **U Wisconsin**

Columbia U


High Frequency CAE often seen on NSTX

- Continuous modes at 1-2MHz appear frequently in H-mode, P≥4MW
- Appear in the early phase of discharge t=200-300 ms
- Propagate co-parallel to beams 8 ≤ n ≤ 13.
- Frequency spacing, mode numbers consistent with CAE
- Often destabilized in combination with n=1 kink mode, possibly as a result of fast ion redistribution

Fast Ion Redistribution Associated with LF MHD

- Depletion of Fast Ion density at the mode onset
- Increase in the peripheral region
- Could the redistribution of Fast Ion destabilize CAE modes?

- Electron density flat in the core
- Is this a necessary condition?
- 'Bat' ear in the pedestal region
 - Reflectometer coverage limited to the edge
 - Challenging inversion of SXR line integrated data

XP goals and objectives

XP Goal: Characterize the hf-CAE and understand the interaction between CAE, kink modes and fast ion population

Objectives

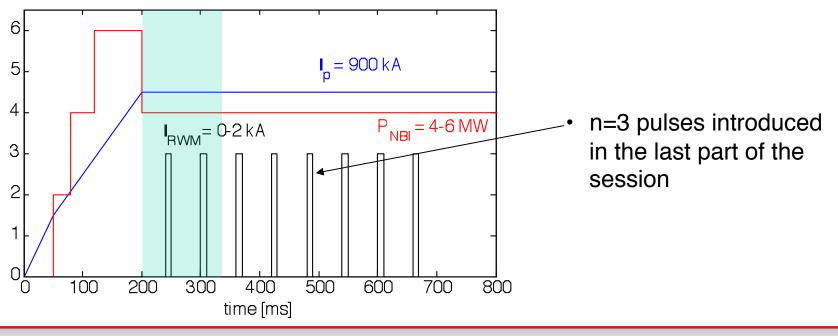
- To measure the radial structure of the High Frequency and Low Frequency MHD
- To measure the redistribution of Fast-Ions (real and phase space) associated with the LF MHD
- Test the dependence of CAE/Kink activity on plasma parameters (e.g. q_{95} , beam ion distribution function)

Allocated time

- 0.5 days FY11 priority 1 (target scenario and objectives 1, 2)
- 0.5 days FY12 priority 2 (complements and extension)

Primary importance diagnostics

Fast-Ion profile and Losses


- 1. FIDAs
- 2. NPA, ssNPA
- 3. sFLIP

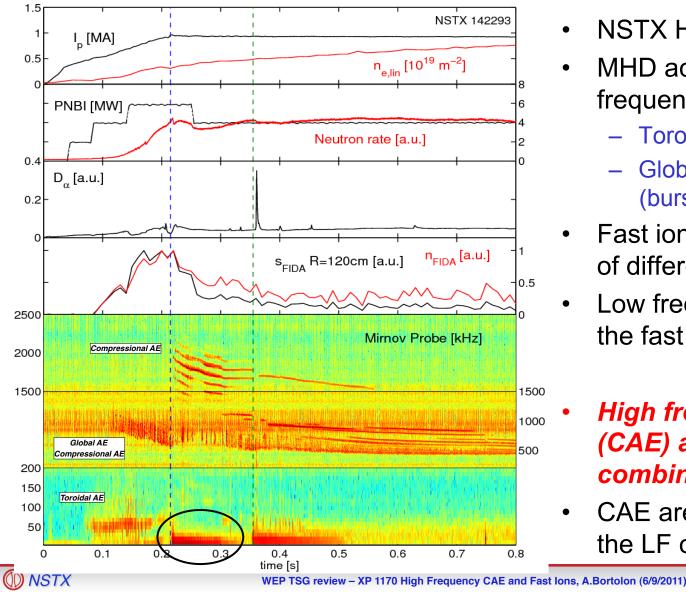
Mode structure

- 1. BES
- 2. USXR, MESXR
- 3. Reflectometer
- 4. Fast Tangential Camera (LF kink or island)
- 5. Interferometer FIRETIP

Reference experimental scenario

- Fiducial like H-mode, high power to reliably obtain HF modes activity
- Li ~50-100 mg, to obtain ELM free plasmas (beneficial to FIDA)
- Large Li rates may imply high pedestal and density ear: detrimental for the measurement
 - Optimize discharge for monotonic n_e profile at mode onset
 - Induce pedestal relaxation by triggering ELMs with n=3 pulses. Measure in the inter ELM phase

Session plan


A.	Repeat reference discharge (sources A,B) – adjust q evolution to get 50 ms MHD quiescent phase		
	after flat top	[2 shots]	
Β.	Optimize density profile for measurements of mode structur	nize density profile for measurements of mode structure and FIDA	
	 Adjust startup parameters, early NB waveforms 	[2 shots]	
	 Vary dr_{sep}, I_p 	[5 shots]	
С.	[if good measurements are obtained] Test plasma paramete dependences	ers	
	– Scan q ₉₅	[3 shots]	
	 Repeat Ref with sources B, C 	[3 shots]	
D.	 Trig ELM with n=3 pulses (last part of 1st session) Repeat Ref with 1.5 kA pulses (10 ms on 60 ms period) Optimize I_{coil} and timing to measure after the ELM and before pedestal recovers 	[5 shots]	

Low Frequency MHD Example of time traces

- NSTX H-mode scenario
- MHD activity at different frequencies:
 - Toroidal AE (bursting)
 - Global/Compressional AE (bursting/continous)
- Fast ions determine stability of different AE modes
- Low frequency MHD affect the fast ion content (n_{FIDA})
- High frequency modes (CAE) appear in combination with LF MHD
 - CAE are destabilized after the LF onset