

Supported by

Effects of 3D Fields on Fast-Ion Confinement XP 1171

A. Bortolon, A. Loarte

W. Heidbrink, G.Kramer, R.Maingi, J.K.Park, M.Podesta', ...

> WEP TSG XP review LSB 252 June 9th 2011

Culham Sci Ctr **U St. Andrews** York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokvo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI NFRI KAIST POSTECH ASIPP ENEA. Frascati CEA, Cadarache **IPP, Jülich IPP, Garching** ASCR, Czech Rep

Introduction

Goal: To investigate how externally imposed 3D fields may affect the fast ion population

- 1. Characterize the perturbed fast ion population
- 2. Characterize the losses (how large, which particles and where)

Contributes to ITPA EP-6: Fast ion losses and associated heat load from edge perturbations (ELMs and RMPs)

Allocated time

- 0.5 days FY11 priority 1 (target scenario and primary objectives)
- 0.5 days FY12 priority 2 (complements and extension)

Experimental Background

- Losses are expected and can be estimated (SPIRAL, ORBIT)
- Resonances between orbits and perturbation determine which particles are affected (energy, pitch, passing, trapped)
- Effect is weak. E.g. no evidence in DIII-D (Heidbrink NF 2000)

- Indirect evidence during FY2010
- Challenging conditions for FIDA
 - 3D fields used for ELM triggering/ pacing: fast modulation, high density, background light contamination
- Need for a dedicate approach:
 FIDA friendly scenario, low
 density, MHD/ELM "free"

Experimental tools

- RWM coils
 - n=3 perturbation
 - static, peripheral
 - destabilize ELMs for I_{RWM} <2 kA
 - n=1 perturbation
 - core penetration, can rotate (up to 120 Hz)
 - may destabilize n=1 kink for I_{RWM}<1 kA
 - affect rotation
 - n=2 perturbation?
 - single coil perturbation?
- Fast Ion and Losses diagnostics
 - FIDA set (Fast-Ion core measurement, phase space insight)
 - NPA, ssNPA
 - sFLIP (optimize the n=3 phasing)
 - midplane IR camera (view on the RF antenna)
 - BES (FIDA background contributions form fast-ion in the edge)

SPIRAL predicts finite losses and effect on Fast-Ion density

- Test case NSTX 142293 H-mode 900kA, 0.37T, q₉₅~7 fiducial shape
 - Source A, 90kV (45, 30 included)
 - Static, n=3, I_{RWM}=0-1.5 kA
- Global losses due to 3D fields up to 10% of injected particles
- Losses scale with I_{coil} , with saturation for I_{coil} >1kA
- Reduced Fast-Ion density in the plasma core (-20% at R=1.25m)

Reference experimental scenario

- H-mode, 4MW, B_{tor}~0.4 T, I_p=900 kA, ELM-free (NSTX 142293)
- Li ~ 100 mg, for ELM suppression and MHD mitigation
- Lowest achievable density to extend FIDA measurement
- Weak-MHD time window: after I_p flat top, before onset of n=1 kink
 - Adjust NBI waveform, increase q_{edge}, increase density
- RWM coil pulses (50 -100 ms) in MHD free time windows
- NBI notches to for $D\alpha$ background validation

Session plan

A.	 Obtain reference discharge (A,B sources at 90kV) Adjust q evolution to obtain MHD quiescent phase after flat top required for the measurement (~50 ms) 	[4 shots]
B.	 Test Static n=3 perturbation Repeat Ref. with 0.5 kA pulses in quiescent phases: optimize timing, reduce B_{tor} to increase relative effect Scan I_{coil} up to ELM destabilization (0.75,1,1.5,2 kA) 	[3 shots] [6 shots]
C.	 Test n=1 perturbation (A, B sources at 90kV) Repeat Ref. with 0.5 kA pulses Scan I_{coil} up to kink destabilization 	[2 shots] [4 shots]
D.	 Test B,C sources combination (to affect passing/trapped) Repeat Ref. with No RWM Repeat Ref. with 0.5 kA pulses 	[3 shots] [2 shots]

SPIRAL simulated losses

- NSTX 142293, I_p=900kA B_{tor}=0.37T •
- 10000 ions injected, 3000 confined •
- Static n=3 I_{coil} = 1 kA •
- Losses increse $30 \rightarrow 37\%$ •

1.0

0.5

臣_{0.0}

-0.5

-1.0

-1.5

Toroidally localized where $dB_r < 0$ •

radial RMP field at the LFS plasma edge

