

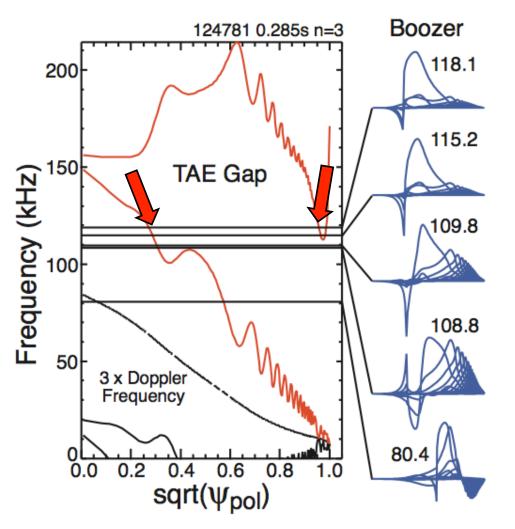
Effects of toroidal rotation on TAE dynamics and TAE radial phase variation

M. Podestà, N. Crocker et al.

WPI-TSG XP review, June 2011

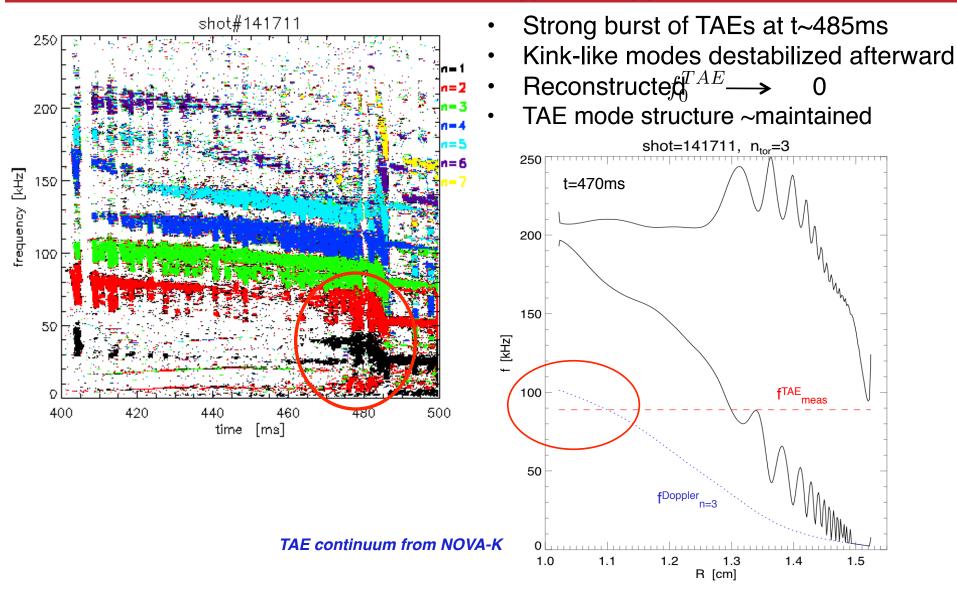
¹/₂ Run Day allocated in FY12, priority 1

Motivation and goals


- Study of TAEs in L-mode made good progress in FY10
 - Collected data for detailed comparison theory/experiments
 - <u>"Rotation" is an important element</u>
- NSTX (low aspect ratio) has large rotation frequency
 - Rotation comparable with TAE frequency (plasma frame)
 - Stability and structure of TAE modes may change as TAE gap varies for different rotation profiles
- Reflectometers measured large ($\sim \pi/2$) radial phase variation for TAEs in FY10 ideal MHD predicts constant phase
 - Instrumental effect?
 - Coupling to fast ions, and other non-ideal effects?
- <u>Goal</u>: explore dependence of TAE dynamics on rotation profile; compare results with predictions from codes such as NOVA-K, M3D-K
 - Include detailed study of radial variations of TAE phase

Example#1: *continuum damping* is sensitive to gap structure; large contribution to total damping on NSTX

NOVA calculations, Lab frame


[E. Fredrickson et al., PoP 16 (2009)]

- As rotation and qprofile evolve, modes can experience strong interaction with continuum
- Can we separate the different effects experimentally?

3

Example#2: coupling of TAEs with kinks/ fishbones favored when $n_{tor} \ge f_{rot}$ on axis ~ f^{TAE} ?

Run plan - 1/2 day experiment

- Target: "best shot" from 2010: shot no 141711 2 shots
 - Target B_{tor} =5.5kG, I_p =900kA, center-stack limited plasma
 - Backup: similar shots from XP-1015 (2010)
 - Position edge (Q-band) reflectometers <u>at midplane</u>
- Optimize scenario for reduced TAE bursts/chirps 6 shots
 - Modifying NB power and timing as needed (e.g. to avoid early kinks, etc.)
- Introduce n=3 braking as early as possible
 - Start ramp as early as ~200 ms, flat-top at 250-280 ms
 - Consider using n=2 instead, based on new results from FY11
- Scan of n=3 braking

6+ shots

- Start with 1 kA; increase/decrease shot-by-shot between ~200A and ~1.5kA (or whenever bad things happen: plasma locks, ...)
- Introduce small vertical jogs (~2cm) later in discharge timing t.b.d. –, measure local k_{pol} with reflectometers & local k_{vert} with BES
- If time permits: revisit scenario with frequent bursts 6 shots
 - Second NB phase starts earlier, increase P_{NB} if needed
 - Repeat n=3 braking scan
- If time permits even more: <u>*H*-mode</u> scenario >4 shots
 - Chose best case from XP-1011, perform n=3 braking scan

5

Required machine and diagnostic capabilities

- Run after XP-1011, test of new SPAs, etc.
- Usual profile diagnostics
 MPTS, CHERS, RTV, (pCHERS)
- Need MSE (NB source A) for q-profile data
- Need all fast ion diagnostics
 - FIDA's, NPA, ssNPA, sFLIP, neutrons
- Mode structure measurements are crucial:
 - Reflectometers
 - BES w/ good radial coverage plus vertical array
 - Soft-X rays (but SNR might be too low)
- Plan to use one/two NB sources at de-rated voltage
- Moderate/low lithium evaporation rate (~5mg/min)