

Supported by

Draft FY2014-18 NSTX Research Goals for Waves and Energetic Particles

Gary Taylor Mario Podesta Nikolai Gorelenkov

NSTX WEP TSG Meeting September 1, 2011

Introduction

- Need draft WEP TSG research goals for 2014-18 plan by September 23 in order to impact the diagnostic solicitation decisions
- At this (and probably a subsequent meeting) we will discuss, review and modify the draft WEP TSG goals provided by Jon Menard
- Goals modified assuming upgrade outage starts in fall and ends mid FY2014 ("Plan B"), run "FY2011/12" experiments in FY2014/15

Plan B

FY2011	FY2012	FY2013	F٦	Y2014	FY2015
	Upgrade Outage (30 months)			NSTX-U Operations	

Identify key diagnostics needed to support WEP TSG draft plan goals from the recent NSTX-U diagnostic brainstorming meetings

Long-term WEP TSG Research Goal for 2014-18: Study the effect of multiple, high-frequency, MHD modes and RF heating on NBI-generated fastion confinement and test whether RF heating and current drive can generate fully non-inductive NBI+RF H-mode plasmas in NSTX-U

Draft Goals for FY2014-18 EP Research

FY11/12 Goals Moved to FY14/15:

- Measure fast-ion redistribution with tangential FIDA & *AE
 eigenfunctions with BES
- Characterize distribution function modifications induced by *AE modes with tangential & perpendicular FIDA

Draft Goals for FY14-18:

- A Measure *AE activity driven by more tangential 2nd NBI compare to existing more perpendicular NBI
- ♦ Implement prototype *AE antenna, then design & install upgrade
- Simulate *AE activity driven by more tangential NBI, extend nonlinear models to Upgrade plasmas with 2nd NBI, compare simulations to new data
- Utilize *AE predictive capability to optimize/minimize *AE activity during non-inductive current ramp-up with 2nd NBI. Compare simulations to experimental results
- Extend simulations of *AE avalanches to FNSF/Pilot current ramp-up phase & assess implications for NBI geometry & expected NBCD

Draft Goals for FY2014-18 HHFW Research

FY11/12 Goals Moved to FY14/15:

- ♦ Heat CHI start-up plasma coupled to induction, sustain low I_p plasma 100% non-inductively
- Improve coupling to NBI-heated H-modes & quantify RF edge power loss mechanisms & effect of ELMs

Draft Goals for FY14-18:

- Assess HHFW performance at higher magnetic field and higher plasma density - especially compatibility with high-power NBI operations
- Utilize HHFW to assist start-up plasma formation compare to shortpulse ECH
- ♦ Assess impact of HHFW electron heating on NBI current ramp-up
- Addify HHFW antenna to have reduced straps & utilize to optimize plasma start-up, ramp-up, and NBI sustainment
- ♦ Design EHO antenna using HHFW straps, or some other location
- ♦ Test EHO antenna for impact on density/particle control

Draft Goals for FY2014-18 ECH/EBW Research

- Implement short-pulse, high-power ECH system for plasma start-up support (0.5-1MW, 10-50ms)
- ♦ Test short-pulse, high-power ECH system for plasma start-up support
- Assess impact of ECH on close-flux current achieved, pulse-length extension, non-inductive fraction
- Upgrade ECH system power and pulse-length for EBW heating studies (1MW, 0.2-0.5s)
- ♦ Project EBW CD performance to FNSF/CTF

Proposed Diagnostics Upgrades that Support WEP Research Goals

Diagnostic Upgrades Supporting FY11/12 Goals Moved to FY14/15:

- $\diamond\,$ Fusion source profile via charged D-D fusion products
- ♦ Fixed sightline NPA
- \diamond 10-40 GHz edge reflectometer for HHFW

Diagnostic Upgrades Supporting FY14-18 Goals:

- ♦ Neutron collimator
- ♦ Upgraded ssNPA
- ♦ FIDA & BES Imaging
- ♦ FIReTIP-II upgrade with 4 MHz bandwidth
- \diamond Profile reflectometry with increased Δf
- ♦ Improved ERD spatial & temporal resolution
- ♦ VB imaging of AE* modes
- ♦ Outboard Langmuir probe array
- \diamond BES expansion & increased resolution
- \diamond BES passive FIDA view
- ♦ Radial polarimetry
- \diamond PCI
- \diamond 2-D wavenumber spectra via high-k scattering
- ♦ Toroidally-displaced in-vessel multi-energy DXR arrays
- ♦ Dual-energy, ultra-fast SXR arrays