

Supported by

HHFW Heating and Current Drive Modeling Results for NSTX H-Mode Plasmas*

College W&M **Colorado Sch Mines** Columbia U CompX **General Atomics** INL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** New York U **Old Dominion U** ORNL PPPL **PSI Princeton U** Purdue U SNL Think Tank, Inc. **UC Davis UC Irvine** UCLA UCSD **U** Colorado **U** Maryland **U** Rochester **U** Washington **U Wisconsin**

Gary Taylor¹

P. T. Bonoli², R. W. Harvey³, J. C. Hosea¹,
E. F. Jaeger⁴, B. P. LeBlanc¹, C. K. Phillips¹,
P. M. Ryan⁴, E. J. Valeo¹, J. R. Wilson¹,
J. C. Wright², and the NSTX Team

¹Princeton Plasma Physics Laboratory, Princeton, NJ, USA
 ²MIT Plasma Science and Fusion Center, Cambridge, MA, USA
 ³CompX, La Jolla, CA, USA
 ⁴Oak Ridge National Laboratory, Oak Ridge, TN, USA

*Work supported by US DoE contracts DE-AC02-09CH11466 and DE-AC-05-00OR22725

US-Japan RF Plasma Physics Workshop Toba, Mie Prefecture, Japan, February 8-9, 2011

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kvushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA, Frascati CEA, Cadarache **IPP. Jülich IPP, Garching** ASCR, Czech Rep **U** Quebec

Office of

Science

HHFW heating and current drive (CD) are being developed on NSTX for non-inductive ramp-up, bulk heating and q(0) control

- Two major roles for HHFW heating and CD in NSTX:
 - Enable fully non-inductive plasma current (I_p) ramp-up through Bootstrap CD (BSCD) and RFCD generated during early HHFW H-mode
 - Provide bulk electron heating during the I_p flat top, when the discharge is in H-Mode and also heated by neutral-beam injection (NBI)

NSTX HHFW research in 2008-10 was focused on studying HHFW & HHFW+NBI deuterium H-modes at low and high I_p

- Near-term approach to assess HHFW heating during ramp-up has been to heat low I_p ohmic plasmas and access 100% non-inductive CD ($f_{\rm NI} \sim 1$)
- Experiments at low I_p (~ 300 kA) last year produced sustained HHFW H-mode with $f_{NI} \sim 0.65$, even though arc-free $P_{RF} \le 1.4$ MW [Phil Ryan's talk]
- Experiments at high I_p (0.7 1 MA) in 2008-9 produced significant bulk electron heating when HHFW was coupled to NBI H-mode plasmas:
 - HHFW acceleration of NBI fast-ions produced enhanced fast-ion losses during HHFW heating
 - Conducted extensive studies of HHFW heating and edge power loss mechanisms during high I_p ELMy and ELM-free H-modes [Joel Hosea's talk]
- This talk presents deposition and CD results for H-mode plasmas heated by HHFW and HHFW+NBI at I_p = 300 kA, and HHFW+NBI at I_p = 900 kA

- RF Modeling Codes
- Low I_p H-mode Modeling Results
- High I_p H-mode Modeling Results
- Summary & 2011-12 Plans

- Low I_p H-mode Modeling Results
- High I_p H-mode Modeling Results
- Summary & 2011-12 Plans

GENRAY ray tracing code calculates the HHFW power deposition and RF-driven current profile

- GENRAY is an all-waves general ray tracing code for RF wave propagation and absorption in the geometrical optics approximation
- GENRAY outputs ray trajectory and absorption data to other codes
- Recently, an all-frequencies, linear, momentum conserving CD calculation has been added to GENRAY (GENRAY/ADJ-QL)
 - The CD calculation utilizes an adjoint (ADJ) approach based on the relativistic Coulomb Fokker-Planck collision operator and the relativistic quasi-linear (QL) flux

TRANSP-TORIC code provides a time-dependent calculation of the HHFW power deposition and CD profile

- TORIC full-wave RF code has been integrated into the TRANSP plasma transport code
- TORIC solves the kinetic wave equation in a 2-D axisymmetric equilibrium
- Solves for a fixed frequency with a linear plasma response
- Present implementation of TORIC in TRANSP can model HHFW deposition but cannot evolve the fast-ion energy distribution self consistently:
 - As a result, the neutron rate (S_n) calculated by TRANSP-TORIC reflects the beam-target reactions for the NBI fast-ions without HHFW acceleration

CQL3D Fokker-Planck code can predict the RF-driven current and the wave field acceleration of the NBI fast-ions

- CQL3D is a relativistic collisional, quasi-linear, 3-D code which solves a bounced-averaged Fokker Planck equation:
 - Uses the ray trajectories and absorption input from GENRAY to calculate the RF power deposition and CD profile
 - > CQL3D also computes wave field effects on the fast-ions & predicts S_n
- Using input data from TRANSP at a particular time-of-interest (TOI), CQL3D can be "run to equilibrium" in order to estimate S_n
- CQL3D currently provides two fast-ion loss calculation options:
 - "No loss" (NL) option, which assumes zero ion gyroradius and banana width
 - "Simple-banana-loss" (SBL) calculation which assumes that any ion which has a gyroradius + banana width > than the distance to the last closed flux surface (LCFS) is promptly lost

RF Modeling Codes

➡ Low I_p H-mode Modeling Results

- High I_p H-mode Modeling Results
- Summary & 2011-12 Plans

Achieved sustained I_p = 300 kA HHFW H-mode, with internal transport barrier (ITB) and $T_e(0)$ = 3 keV with P_{RF} = 1.4 MW

- Experiments in 2005 did not maintain RF coupling during $I_p = 250$ kA HHFW H-mode due to poor plasma position control at L-H transitions
- Sustained HHFW H-mode at $I_p \sim 300$ kA in 2010 made possible by reduced plasma control system latency:
 - ITB formed during H-mode

GENRAY-ADJ predicts peaked RF deposition on electrons and 115 kA/MW RFCD efficiency, assuming no coupling loss

HHFW Heating and CD Modeling Results for NSTX H-Mode Plasmas (Taylor)

NSTX

US-Japan RF Workshop

80% of the non-inductive current is generated inside the ITB in the I_p = 300 kA HHFW H-mode

<u>TORIC-TRANSP modeling for η_{eff} = 100%:</u>

HHFW H-Mode	
I _{BS} (kA)	130 kA
I _{RF} (kA)	70 kA
f _{NI}	0.65

For $n_{eff} = 60\%$

 Motional Stark Effect – Laser Induced Fluorescence (MSE-LIF) diagnostic will allow current profile measurements during HHFW H-modes in 2011-12

Coupling P_{RF} = 1.4 MW into I_p = 300kA P_{NBI} = 2 MW H-mode resulted in lower f_{NI} than the I_p = 300kA HHFW H-mode

- Density increased during HHFW heating probably due to fast-ion interaction with the antenna
- Much lower T_e(0) and higher n_e(0) than HHFW H-mode resulted in lower
 → I_{RFCD} ~ 10-20 kA
- 50% of injected NBI fast-ions are promptly lost at this low I_p
- $I_{Bootstrap} = 60-90 \text{ kA}, I_{NBICD} = 50-70 \text{ kA}$
- η_{eff} was only ~ 40%:
 - ➢ high n_{edge} ~ 1-2 x10¹² m⁻³ (n_{crit} ~ 5x10¹¹m⁻³), probably caused more surface wave loss

40% of coupled RF power accelerates NBI fast-ions which are then promptly lost from the plasma

HHFW heating of I_p = 300 kA NBI H-mode produces a small increase in f_{NI}, due to increased I_{Bootstrap}

TORIC-TRANSP modeling for η_{eff} = 100%:

- RF Modeling Codes
- Low I_D H-mode Modeling Results

- ➡ High I_p H-mode Modeling Results
 - Summary & 2011-12 Plans

Compare two closely matched I_p = 900 kA ELM-free H-mode plasmas: NBI+HHFW and NBI

- $I_P = 900 \text{ kA}, B_T = 0.55 \text{ T}, P_{NBI} = 2 \text{ MW}, P_{RF} = 1.9 \text{ MW}, k_{||} = 13 \text{ m}^{-1}$
- Benign MHD activity in both plasmas
- MSE q profiles unavailable
- Times-of-interest (TOI) 0.248 s and 0.315 s

- Identical T_e and n_e H-mode profiles before HHFW power onset
- Broad T_e profile increase during HHFW heating, n_e profile remains unchanged and plasma stayed in H-mode

TRANSP-TORIC predicts ~ 50% of P_{RF} coupled to I_p = 900 kA ELM-free NBI H-mode absorbed inside LCFS

- Fraction of P_{RF} absorbed within LCFS (f_A) obtained from TRANSP-calculated electron stored energy:
 - W_{eX} from HHFW+NBI H-mode
 - $W_{\rm eR}-$ from matched NBI H-mode
 - $W_{eP}-$ using χ_{e} from NBI H-mode to predict T_{e} in HHFW+NBI H-mode
- $\eta_{eff} = (W_{eX} W_{eR}) / (W_{eP} W_{eR}) = 0.53 \pm 0.07$
- TORIC used to calculate the power absorbed by electrons (P_{eP}) assuming 100% RF plasma absorption
- Electron absorption, $P_{eA} = \eta_{eff} \times P_{eP}$ For $P_{RF} = 1.9$ MW:
 - 0.7 MW letter
 - 0.3 MW ions

CQL3D code predicts significant fast-ion losses in I_p = 900 kA ELM-free HHFW+NBI H-modes

 Without fast-ion loss CQL3D predicts much higher neutron production rate (S_n) than is measured

•
$$f_{NI} \sim 0.3 \ (I_{Bootstrap} = 180 \text{ kA}, \ [I_{RFCD} + I_{NBICD}] = 60 \text{ kA})$$

Fast-ion diagnostic measures no change in fast-ion density during HHFW heating, consistent with CQL3D modeling

- RF Modeling Codes
- Low I_D H-mode Modeling Results
- High I_D H-mode Modeling Results

➡ Summary & 2011-12 Plans

Summary

• Positive feedback between ITB, high $T_e(0)$ and RFCD during $I_p = 300$ kA HHFW H-mode produced $T_e(0) = 3$ keV and $f_{NI} \sim 0.65$ using $P_{RF} = 1.4$ MW

➢ To achieve f_{NI} ≥ 1 at I_p~ 300kA will require P_{RF}~ 3 MW, well below minimum arc-free P_{RF} available in 2009

- $T_e(0)$ and f_{NI} in $I_p = 300$ kA NBI+HHFW H-mode significantly lower than for $I_p = 300$ kA HHFW H-mode due to fast-ions interacting with antenna
- Modeling results for I_p = 900 kA ELM-free H-modes are consistent with broad T_e profile increase and enhanced fast-ion loss during HHFW:
 ~ 40% of P_{RF} directly heats bulk electrons
 ~ 15% of P_{RF} accelerates fast-ions, that are mostly promptly lost
 ~ 45% of P_{RF} goes to edge losses (surface waves, parametric decay etc.)

Plans for 2011-12 HHFW Research

HHFW Experiments:

- HHFW coupling at low I_p & during I_p ramp-up
 - \succ HHFW heating of low I_p plasma
 - Couple HHFW into CHI-initiated plasma
 - > HHFW-assisted I_p ramp-up of an inductively generated discharge to 400kA
- HHFW+NBI high I_p H-modes at P_{nbi} up to 6 MW:
 - Interaction of fast-ions with antenna and antenna heating
 - Study surface waves at maximum available P_{rf} & P_{nbi}
 - \blacktriangleright Dependence of heating and CD efficiency on k_{II}, outer gap, n_{edge}

HHFW Modeling:

- Complete full finite-orbit-width CQL3D (late 2011)
- Benchmark core HHFW CD in HHFW+NBI H-mode against advanced RF codes upgraded to include interactions with fast-ions

New & Upgraded Diagnostics will Aid HHFW Research in 2011-12:

- MSE-LiF will provide q(r) without NBI heating
- Additional Thomson scattering channels will improve RF modeling
- Tangential FIDA will improve the study of RF fast-ion interaction