

Interpretive model for resonant fast ion transport by Alfvénic instabilities

M. Podestà and many contributors

PPPL, B252

Aug. 28th 2012

Motivation

- Resonant/stochastic fast ion transport may not be well described by *diffusive* processes, Γ~dn/dr
 - Resonances introduce selectivity in phase space (Energy, pitch)
- Fast ion transport models presently implemented in TRANSP/NUBEAM do not include basic physics of wave-particle resonant interaction
- Codes such as M3D-K do treat resonant interaction correctly, but are not designed for 'mass production'
- New "general/reduced" model is required to complement existing models
 - Must capture basic mechanisms of wave-particle interaction
 - Formulation must be compatible with TRANSP/NUBEAM

- Scope of new model
- Main ingredients
 - Choice of variables
 - Constraints from resonant interaction with *AEs
- General implementation
 - Probability distribution to evolve particles' orbits
- Questions, comments, open issues

<u>Backup:</u>

- Example#1: computing the 'Mode Amplitude'
- Example#2: deriving the transport coefficients
- Example#3: evolving F_{nb} in time

Scope of new model

- Main ingredients
 - Choice of variables
 - Constraints from resonant interaction with *AEs
- General implementation
 - Probability distribution to evolve particles' orbits
- Questions, comments, open issues

Backup:

- Example#1: computing the 'Mode Amplitude'
- Example#2: deriving the transport coefficients
- Example#3: evolving F_{nb} in time

Goal: simulate *long-term* effects on F_{nb} from Alfvén Eigenmodes (*AEs) with arbitrary amplitude evolution A_{modes}(t)

- Example: average energy step at fixed energy, A_{modes}
 - ORBIT simulation with 3 TAE modes from NOVA-K
- Regions with significant <u>resonant</u> interaction well identified in (E,P_ζ,μ) space
- How can these variations be accounted for in generalpurpose codes such as TRANSP?

All fast ion transport models presently implemented in TRANSP have *diffusive* nature; little/no phase space selectivity

• Four models presently implemented in TRANSP for fast ion diffusion coefficient, *D*_b

[from http://w3.pppl.gov/~pshare/help/transp.htm]

1)
$$D_b = k_{ADIFB} \times D_e$$

2)
$$D_b = k_{ADIFB} \times D_e^{WP}$$

 k_{ADIFB} : multiplier $D_e(x,t)$: electron particle diffusivity

 $D_e^{WP}(x,t)$: electron particle diffusivity from Ware-pinch corrected flux

3)
$$\Gamma_{fi} = -D_b \nabla n_b + v_b n_b$$

diffusion/convection model

4)
$$D_b(E, t, x) = \Sigma_k \alpha_k D_k$$

 $D_k(E,x,t)$: diffusivity for deeply trapped, barely trapped, cobarely passing, ...

New model introduces selectivity in phase space, generalizes "diffusive transport" paradigm

- Info on phase space dynamics paramount for Verification&Validation of codes, theory-experiment comparison : *need phase-space representation*
- Steady-state ("fluid") equilibrium does not provide all information we need : *need E, pitch details*
 - E.g. phase space transiently (and selectively) modified by *AE bursts : effects propagate during slowing-down
 - \Rightarrow Solutions for F_{nb} based on integral quantities (f.i. density, neutrons, $E_r/rotation$, NB-driven I_p , ...) **not unique**
- Time-scale τ_{res} for resonant/stochastic transport can be faster than diffusion time : *implementation?* $\tau_{transit} \leq \tau_{res} < [d(logA_{modes})/dt]^{-1} < < \tau_{diff}$ (typically)
- The new model must be "simple" enough to be included in TRANSP/NUBEAM for routine use
 - Retain only minimum required amount of information to represent resonant/stochastic fast ion response to *AEs
 - e.g., no attempts to follow "single-particle" orbits

Scope of new model

• Main ingredients

- Choice of variables
- Constraints from resonant interaction with *AEs
- General implementation
 - Probability distribution to evolve particles' orbits
- Questions, comments, open issues

Backup:

- Example#1: computing the 'Mode Amplitude'
- Example#2: deriving the transport coefficients
- Example#3: evolving F_{nb} in time

'Constants of motion' are the natural variables to describe resonant wave-particle interaction

• Each orbit fully characterized by:

Single (isolated) resonances introduce simple constraints on particle's trajectory in (E,P_ζ,μ)

• From Hamiltonian formulation:

 $\omega P_{\zeta} - nE = const. \implies \Delta P_{\zeta} / \Delta E = n/\omega$

 $\omega = 2\pi f$, mode frequency *n*, toroidal mode number

Presence of multiple modes/resonances distorts the 'ideal' (linear) relationship

For low-frequency *AEs with $\omega < <\omega_{ci}$ such as TAEs, magnetic moment μ is conserved (...well, *almost*)

- In these notes, it is assumed that $\Delta \mu = 0$
- <u>However</u>: $\Delta \mu = 0$ hypothesis may break down if
 - ρ_{f} ~ radial width of the modes
 - $\rho_f \sim$ scale-length of equilibrium profiles
 - Both conditions are likely to be met in spherical tokamaks (e.g. NSTX)
- Proposed model can be generalized to cases where µ is not conserved
 - Also important for ω_{ci} -range instabilities: GAE/CAEs

- Scope of new model
- Main ingredients
 - Choice of variables
 - Constraints from resonant interaction with *AEs
- General implementation
 - Probability distribution to evolve particles' orbits
- Questions, comments, open issues

Backup:

- Example#1: computing the 'Mode Amplitude'
- Example#2: deriving the transport coefficients
- Example#3: evolving F_{nb} in time

Single-resonance case: introducing the *probability distribution function* for particle transport

🔘 NSTX-U

Analytical formulation *could* be extended to multi-mode case - but it would be quite unpractical

In practice, too many parameters to be passed to TRANSP/NUBEAM

General case: reduce number of parameters; dependence on $A=A_{modes}(t)$ can be simplified; use raw $p(\Delta E, \Delta P_{\zeta})$ directly

- 'Convective' terms ΔE_0 , $\Delta P_{\zeta 0}$ are =0 if slowing down is accounted for elsewhere
- Variances $\sigma_{E}, \sigma_{P\zeta}$ are roughly linear with A_{modes} :
 - Specify $p(\Delta E, \Delta P_{\zeta})$ for $A_{modes} = 1$ only, then re-scale $\sigma \rightarrow \sigma' = A_{modes} \times \sigma$

Solution Pass the raw matrix $p(\Delta E, \Delta P_{\zeta} | P_{\zeta}, E, \mu)$ to TRANSP/ NUBEAM directly – no analytical form required

Layout of TRANSP/NUBEAM implementation (as seen from an experimentalist...)

- Compute $p(\Delta E, \Delta P_{\zeta} | P_{\zeta}, E, \mu)$
 - ORBIT, SPIRAL, theory
 - *Generalize to 6D matrix $p(\Delta E, \Delta P_{\xi}, \Delta \mu | P_{\xi}, E, \mu)$ if μ is not conserved
- Pass 'Ufiles' to TRANSP/NUBEAM
 - 2 files: 5D matrix* for $p(\Delta E, \Delta P_{\zeta}, \Delta \mu | P_{\zeta}, E, \mu)$, vector for $A_{modes}(t)$
- Evolve F_{nb} at each step:
 - I. Re-normalize bins (P_{ζ} , E, μ) based on q-profile, fields, ...
 - → II. Identify 'bin' in (P_{ζ} , E, μ) for current 'particle' (i.e. orbit)
 - III. Extract $\sigma_{E}, \sigma_{P\zeta}$ (σ_{μ}) from multivariate p($\Delta E, \Delta P_{\zeta}, \Delta \mu$)
 - IV. Calculate step magnitude, based on A_{modes}(t)
 - V. Compute slowing down, scattering
 - VI. Advance particle's trajectory in phase space (steps II-VI actually divided in sub-steps)

oop over particles

- Scope of new model
- Main ingredients
 - Choice of variables
 - Constraints from resonant interaction with *AEs
- General implementation
 - Probability distribution to evolve particles' orbits
- Questions, comments, open issues

Backup:

- Example#1: computing the 'Mode Amplitude'
- Example#2: deriving the transport coefficients
- Example#3: evolving F_{nb} in time

Generalize to multiple MHD classes?

 Scenarios with presence of more than one MHD type of modes are quite common

- NSTX: kink + GAE/CAEs + TAEs

- Formulation discussed so far can only deal with one class at the time
- However, this general case is of great interest
 - More realistic F_{nb} evolution when modes have comparable amplitude
 - Can mock-up scenarios such as 'fast ion channeling'

- To extend the model to multi-class case, each class can be represented by its $p_k(\Delta E, \Delta P_{\zeta}, \Delta \mu)$
 - MonteCarlo scheme becomes more complicated: how to decide which class is 'active' for a specific bin (P_{ξ}, E, μ) ?
 - Is the effect of different classes simply additive?
 - Is this something worth pursing from the beginning?

Use the model in 'predictive' mode?

- As it is, the model would be OK to analyze 'real' discharges
 - Need mode structure to calculate $p(\Delta E, \Delta P_{\zeta})$, e.g. from NOVA-K and reflectometers' data
 - Need data (Mirnovs, neutrons, etc.) to infer A_{modes}(t)
- Two possibilities for 'predictive' runs:
 - Find reasonable guess for unstable modes (e.g. NOVA-K)
 - Explore different scenarios w/ scan of A_{modes}(t): weak *AE activity, bursts/avalanches, etc.

or:

- Have an additional module to compute A_{modes}(t) self-consistently
- Still requires mode structure, probably estimates for γ_{drive} , γ_{damp}
- Let $A_{modes}(t)$ evolve according to F_{nb} evolution how?
- Couple to Quasi-Linear model? Use Q-L instead?

Additional questions, comments, open issues

Scope/approach:

- Which particular aspects targeted by new model are not included in existing models?
- Are there too many (T)AE resonances that can be accounted for by the model?
- Alfvénic time scale too fast for diffusion, look for steady-state solution?
- Approach looks OK, but is it providing too much detailed info?

Implementation:

- Should $\Delta \mu \neq 0$ case be included by default?
- What new code is required in TRANSP/NUBEAM? Need to include parts from ORBIT (SPIRAL, else)?
- How to optimize sub-steps for orbit calculation? Take A(t) time-scale as reference?
- Is 'normalization' of $p(\Delta E, \Delta P_{\xi})$ vs. time using B0, Ψ_w , ... OK?
- Is simple re-scaling $\sigma_E' = A_{mode} x \sigma_E OK$, or need to specify a separate scaling function $\sigma_E' = f(A_{mode}) x \sigma_E$?

Test/check-out:

• May need to start with "simple" case, e.g. internal kink w/ $\Delta E=0$, $\Delta P_{\xi} \neq 0$ and no energy dependence for given resonance.

BACK UP

- Scope of new model
- Main ingredients
 - Choice of variables
 - Constraints from resonant interaction with *AEs
- General implementation
 - Probability distribution to evolve particles' orbits
- Questions, comments, open issues

<u>Backup:</u>

- Example#1: computing the 'Mode Amplitude'
- Example#2: deriving the transport coefficients
- Example#3: evolving F_{nb} in time

Experimental scenario for tests presented in these notes: NSTX H-mode plasma with bursts of TAE activity

E. Fredrickson et al., Nucl. Fusion (2012, submitted)

🔘 NSTX-U

Ex#1: compute the 'mode amplitude', A(t) /1

 First step is to obtain the relation between mode amplitude and 'transport':

- Ideal modes from NOVA-K
- Rescale modes based on comparison with reflectometers
- Compute transport, expected neutron drop with ORBIT
- Scan mode amplitude w.r.t.
 experimental one, A=1

Ex#1: compute the 'mode amplitude', A(t) /2

 Get A(t) from measured neutrons + 'table look-up':

Compute fractional R_n
 drops vs. time

Use figure from previous slide to find corresponding (normalized) mode amplitude

- Scope of new model
- Main ingredients
 - Choice of variables
 - Constraints from resonant interaction with *AEs
- General implementation
 - Probability distribution to evolve particles' orbits
- Questions, comments, open issues

<u>Backup:</u>

- Example#1: computing the 'Mode Amplitude'
- Example#2: deriving the transport coefficients
- Example#3: evolving F_{nb} in time

Ex#2: deriving the transport coefficients

- Run ORBIT with A=1, constant
- Simulation time long enough (~1ms) to capture *AE effects
- Track (P_{ζ} , E, μ) in time for each particle, steps $\delta t_{sim} \sim 50 \mu s$
- Compute $\Delta E, \Delta P_{\zeta}, D\mu$
- Re-bin over (P_{ξ} ,E, μ) space
- Get $p(\Delta E, \Delta P_{\xi} | P_{\xi}, E, \mu)$ for each bin

- Scope of new model
- Main ingredients
 - Choice of variables
 - Constraints from resonant interaction with *AEs
- General implementation
 - Probability distribution to evolve particles' orbits
- Questions, comments, open issues

<u>Backup:</u>

- Example#1: computing the 'Mode Amplitude'
- Example#2: deriving the transport coefficients
- Example#3: evolving F_{nb} in time

Ex#3: evolving F_{nb} in time

- Particle's motion is characterized by different time-scales:
 - Oscillation in wave field *neglected*
 - 'Jumps' $\Delta E, \Delta P_{\xi}$ around instantaneous energy, P_{ξ}
 - Slow drift from initial energy, P_{ζ}

Mode amplitude can evolve on time-scales shorter than typical TRANSP steps ~5-10 ms

- Need to represent F_{nb} evolution as a sequence of sub-step
 - Duration δt_{step} sufficiently shorter than time-scale of mode evolution
 - Examples here have $\delta t_{step} \sim 25-50 \ \mu s$
 - Is this compatible with NUBEAM scheme?

Discrete bins in (P_ζ,E,μ) can contain both *resonant* and *non-resonant* particles

- 'Resonant' particles undergo large ΔE , ΔP_{ζ} variations
- 'Non-resonant' particles have small fluctuations around initial energy, P_ζ
- To keep track of particle's class:
 - Sample steps $\sigma_{\rm E}$, $\sigma_{\rm PC}$ at first step only
 - exception: particle move to a different bin -> re-sample

$p(\Delta E, \Delta P_{\zeta}|P_{\zeta}, E, \mu)$ can be skewed to positive/negative $\Delta E, \Delta P_{\zeta}$, causing overall drift of $F_{nb}(P_{\zeta}, E, \mu)$

- Introduce 'random sign' for *i*-th step in MC procedure, S_{r,i}
- For each particle (e.g. pair of correlated steps $\sigma_{\rm E}$, $\sigma_{\rm Pz}$), calculate $S_{r,i}$ from probability of positive vs. negative steps
 - From $p(\Delta E, \Delta P_{\zeta})$ compute

$$p_{+} \doteq p(\sigma_{E,i}, \sigma_{P_{\zeta},i}) \quad ; \quad p_{-} \doteq p(-\sigma_{E,i}, -\sigma_{P_{\zeta},i})$$

- Then define f_{sign}:

$$f_{sign} = \frac{p_+}{p_+ + p_-}$$

- Finally, use $0 < f_{sign} < 1$ to bias random extraction of $S_{r,i} = +1, -1$

- At each 'macroscopic' TRANSP step:
 - I. Re-normalize bins (P_{ζ} , E, μ) based on q-profile, fields, ...
 - > II. Identify 'bin' in (P_{ζ}, E, μ) for current 'particle' (i.e. orbit)
 - III. Extract steps $\sigma_{E}, \sigma_{P\zeta}$ (σ_{μ}) from multivariate p($\Delta E, \Delta P_{\zeta}, \Delta \mu$)
 - IV. Compute sign $S_{r,i}$ from p(ΔE,ΔP_ζ)
 - V. Rescale steps based on A_{modes}(t):

VI. Advance E,
$$P_{\zeta}$$
 (µ):
 $\overline{\Delta E}_i = S_{r,i} \times A_{mode}(t = \overline{t}) \times \sigma_{E,i}$
 $E_i = E_i + \overline{\Delta E}_i$

VII. Compute slowing down, scattering VIII. Advance particle's trajectory in phase space

Steps III-VII divided in sub-steps for each particle

Loop over particles

Example: evolving F_{nb} over 270 µs in 5 sub-steps

Reconstruction works (decently) for different classes: co-, counter-, trapped

black: ORBIT

red: re-constructed

Reconstruction works (decently) at different sub-steps

black: ORBIT red: re-constructed