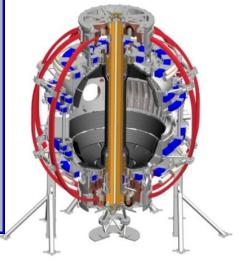


Supported by


XP1518: RWM PID control optimization based on theory and experiment

Coll of Wm & Mary Columbia U **CompX General Atomics** FIU INL Johns Hopkins U LANL LLNL Lodestar MIT Lehigh U **Nova Photonics** ORNL PPPL Princeton U Purdue U SNL Think Tank, Inc. **UC Davis UC** Irvine UCLA UCSD **U** Colorado **U Illinois U** Maryland **U** Rochester **U** Tennessee **U** Tulsa **U** Washington **U** Wisconsin X Science LLC

S. A. Sabbagh, J.W. Berkery, J.M Bialek Y.S. Park, (et al...)

Department of Applied Physics, Columbia University, New York, NY

NSTX-U Macrostability TSG Meeting June 30th, 2015 PPPI

Culham Sci Ctr York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Inst for Nucl Res. Kiev loffe Inst TRINITI Chonbuk Natl U NFRI KAIST POSTECH Seoul Natl U ASIPP CIEMAT FOM Inst DIFFER ENEA, Frascati **CEA**, Cadarache **IPP**, Jülich **IPP, Garching** ASCR, Czech Rep

Columbia U. Group 2015 Macrostability TSG XPs (Short Summary)

- XPs (related XPs assigned numbers for "2011 run")
 - RWM stabilization dependence on neutral beam deposition angle (~XP1149) (Berkery)
 - RWM stabilization physics at reduced collisionality (~XP1148) (Berkery)
 - RWM state space active control physics (independent coil control) (~XP1145) (Sabbagh)
 - RWM control physics with partial control coil coverage (JT-60SA) (~XP1147) (Y-S Park)
 - RWM PID control optimization based on theory and experiment (~XP1111) (Sabbagh)
 - RWM state space active control at low plasma rotation (~XP1146) (Y-S Park)
 - Neoclassical toroidal viscosity reduced v (independent coil control) (~XP1150) (Sabbagh)
 - NTV steady-state rotation at reduced torque (HHFW) (~XP1062) (Sabbagh)
 - Multi-mode error field correction using the RWMSC (to follow initial EFC XP)
 - NTM Entrainment in NSTX-U (Y.S. Park)
- Piggyback XPs

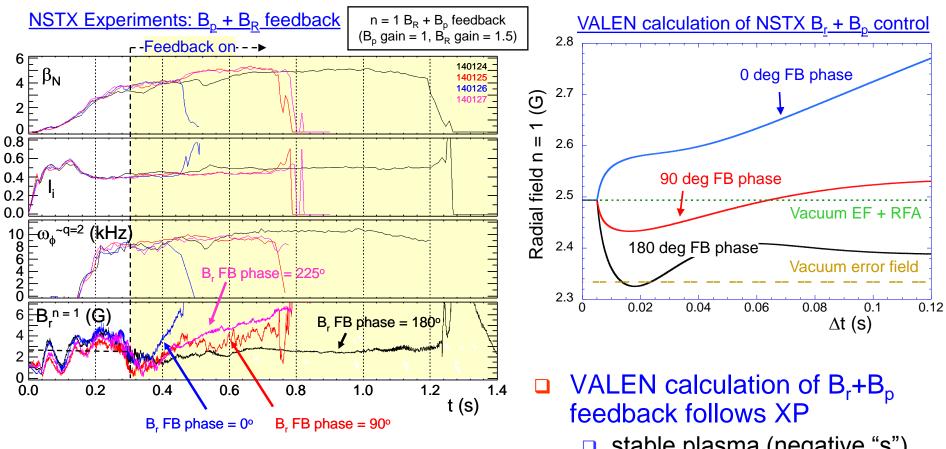
Disruption PAM characterization, measurements, and criteria (Sabbagh, for DPAM WG)
 <u>NOTE</u>: - some shot plans <u>already scoped out</u> in web submissions (not repeated here)
 - run day requests mostly assume leveraging "2nd NBI XP", "Ip/Bt scaling XP"

XP1518: RWM PID control optimization based on theory and experiment

Motivation

- Experiments using n = 1 RWM control in 2010, and subsequent analysis using the VALEN code show that some settings for control using dual B_R and B_p sensor feedback were optimal, others could have been improved
- Active RWM PID control settings need to be re-optimized for NSTX-U
- Support general NSTX-U experiments by optimizing RWM PID control

Goals / Approach


Optimize n = 1 RWM PID control focusing on scans of key parameters

- Vary B_p feedback phase, B_R feedback gain which differ in the most in the analysis from the experimental settings
- B_p sensor gain will also be examined in this experiment (never scanned with r/t AC compensation).
- Perform on high performance target plasmas (fiducial; low l_i; snowflake)

Addresses

- General support for NSTX-U high beta experiments, R(15-3)
- ITPA joint experiment MDC-17

RWM B_r sensor n = 1 feedback phase variation shows superior settings when combined w/B_p sensors; good agreement w/theory

- Favorable (experimental) B_p feedback settings, varied B_R settings
 - Positive/negative feedback produced at theoretically expected phase values

- stable plasma (negative "s")
 New examining plasma
- Now examining plasma response model variation
 - impact of "s", and diff. rotation ("α") on results

XP1518: RWM PID control optimization based on theory and experiment – basic shot scans / run time allocation

- **Primary scans** (number of data points/shot will depend on high beta steady-state duration)
 - Vary B_p sensor feedback phase, no B_r feedback (4 shots) (at 4 phases/shot)
 Extra shot added here in case gain increase needed
 - □ Vary B_p sensor feedback gain, no B_r feedback (2 shots)
 - □ Vary B_r sensor feedback gain, with "best" B_p feedback settings (2 shots)
 - B_r sensor feedback phase of 180 degrees
 - □ Vary B_r sensor feedback phase, with "best" B_p feedback settings (2 shots)
 - Vary B_p sensor feedback phase to check with "best" B_r feedback (4 shots)

Additional details/scans

- Add an interval of pre-programmed n = 1 field to determine that feedback is being effective – change gain if needed on early shots (no extra shots needed)
- Use fiducial, or generally high performance low l_i target plasma
- May wish to redo all/part of these scans on significantly different NSTX-U plasma conditions (e.g. standard DND vs. snowflake)

Run time

□ 0.5 priority run days allocated for XP1518 (~14 shots?)

XP1518: RWM PID control optimization based on theory and experiment – Diagnostics, etc.

Required diagnostics / capabilities

- **Q** RWM B_p and B_r sensors
- **Q** RWM n = 1 PID feedback using B_p and B_r sensors
- **RWM** coils generating n = 3 or n = 2 applied field configurations
- CHERS toroidal rotation measurement
- Thomson scattering
- MSE
- Toroidal Mirnov array / between-shots spectrogram with toroidal mode number analysis

Desired diagnostics / capabilities

- Real-time rotation measurement
- USXR and ME-SXR
- Fast camera