
Extending 3D Magnetic Diagnostics in NSTX-U

GENERAL ATOMICS

MJLanctot/nstxu/Dec2015

A new focus of PPPL-GA collaboration is on the extension of 3D magnetic diagnostic for NSTX-U

• Project is part of long-term PPPL-GA collaboration (since 1999)

- Recent Title: Collaborative research on configuration optimization of advanced operating scenarios and control including macroscopy stability
- PI: Rob La Haye (DOE FOA: DE-FG02-99ER54522)

Approach/Objectives

- Leverage lessons learned from 3D magnetics upgrade on DIII-D to enhance detection of 3D fields in NSTX-U
 - Source expertise from multiple institutions
- Enable new physics results
 - Model validation: Ideal, resistive, extended MHD, kinetic models
 - Improved error field compensation and rotation control
 - Multi-mode control
 - Disruption physics
- Provide input to future devices and upgrades

Physics objectives drive the requirements for non-axisymmetric field measurements (from DIII-D)

Objectives

- Plasma response (PR) to applied 3D fields
 - PR to error fields and RMPs
 - Direct measurement of EM torque
- Equilibrium reconstruction
 - Improve axisymmetric equilibrium reconstruction
 - Full and perturbed 3D equilibrium reconstruction
- Unstable plasma modes: low n, low frequency
 - Poloidal structure of non-rotating modes n>1
 - Poloidal structure of rotating modes
- Unstable plasma modes: high n, high frequency
 - Detection of ELM precursors
 - Energetic particle instabilities
- Disruption physics
 - Runaway electrons & their instabilities

Requirements

$$\left\{ egin{array}{c} n\leq 3,m\leq 15\ \delta B_p,\delta B_r \end{array}
ight\}$$

$$n = 1, m \le 5$$

 $\delta B_p, \delta B_r$

$$n \le 3, m \le 15$$
$$\delta B_p, \delta B_r$$

$$\begin{array}{c} n = 1, m \le 5 \\ \delta B_p, \delta B_r \end{array}$$

Physics objectives drive the requirements for non-axisymmetric field measurements (from DIII-D)

Objectives

- Plasma response (PR) to applied 3D fields
 - PR to error fields and RMPs
 - Direct measurement of EM torque
- Equilibrium reconstruction
 - Improve axisymmetric equilibrium reconstruction
 - FuAre these objectives/un reconstruction
- requirements valid also for
 - Poloidal structure of non-rotating modes n>1
 - PONSTX-U?re of rotating modes
- Unstable plasma modes: high n, high frequency
 - Detection of ELM precursors
 - Energetic particle instabilities
- Disruption physics
 - Runaway electrons & their instabilities

<u>Requirements</u>

$$n \leq 3, m \leq 15$$

 $\delta B_p, \delta B_r$

$$\begin{array}{c} n = 1, m \le 5 \\ \delta B_p, \delta B_r \end{array}$$

$$n \le 3, m \le 15$$
$$\delta B_p, \delta B_r$$

$$\begin{array}{c} high \ m,n \\ high \ f \rightarrow \dot{B_p} \end{array}$$

$$\begin{array}{c} n = 1, m \le 5 \\ \delta B_p, \delta B_r \end{array}$$

Why measure both δB_p and δB_r but not δB_T ?

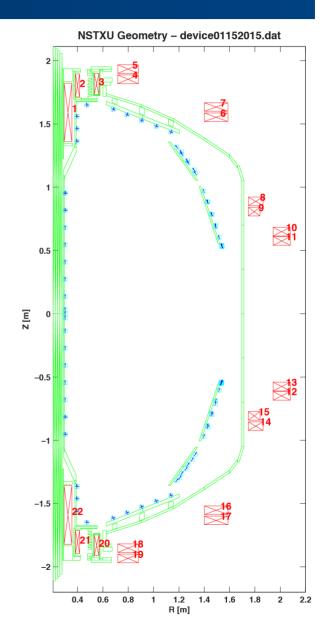
- Multiple components increase confidence in measurement
- Sensitive to different types of modes, different physics
- Both components required to resolve Maxwell stress
- δB_T is small, doesn't provide new info; can get from $\delta B_p, \delta B_r$

Source	Bp probe coupling	Br loop coupling
Equilibrium field (n=0)	~	Small (typ. < 20% of Bp)
Nearby RMP coils	Small (minimize by design)	~
Rotating MHD modes, ELMs	~	negligible (at f > 1 kHz)
Non-rotating MHD modes Response to RMP	~	~

General considerations

- Prudent to organize sensors into toroidal arrays
 - Dictated by tokamaks near-axisymmetry
 - Non-axisymmetry is "small": 10⁻⁴ 10⁻² of axisymmetric field
 - Account for axisymmetric field (n=0) using sensor differences at same poloidal location (either in hardware or software)
- For low frequency applications, need about a dozen sensors in a toroidal array to simultaneously resolve multiple toroidal modes
 - Difficult to do more than this due to scarcity of real estate
 - Might do with fewer to get n=0 & one other n (w/ caveats)
- Location location location! -- Key questions to answer are
 - How many new sensors are warranted?
 - How to spatially distribute the sensors?
 - What impact will compromises have on capabilities?

Proposed topics/steps for developing design and supporting operations, data analysis


- 1. Collect relevant information on NSTX-U configuration
- 2. Identify available and restricted wall regions
- 3. Assemble relevant metrics for optimizing design
- 4. Evaluate completeness of existing magnetic measurements
- 5. Collect available plasma response calculations (pursue more A/N)
- 6. Establish testable hypotheses (provide the strongest motivation)
- 7. Propose initial conceptual design
- 8. Address input from experts
- 9. Final conceptual design
- 10. Evaluation of measured fields, frequency response, noise spectrum
- 11. Document initial results with comparison to plasma response models

Collect relevant information on NSTX-U configuration

- NSTX-U passive and active conductors in 2D \checkmark
 - Sabbagh device in TokSys
- Existing magnetic sensor locations
 - MDS spreadsheet used to build TokSys sensors
 - Vertical length of probes: Bp: 3cm and Br loops: 0.2435m ?
- Existing 3D coil geometry
 - Simple model in TokSys
 - Will update with detailed geometry (NTVTOK)

Identify relevant NSTX data for 3D coils/sensors ✓

- Received discharge numbers from Gerhardt
- May get more 3D field pulses today

Assemble relevant metrics for optimizing design

- SVD Condition number of coupling matrix
 - Given measurements at x_k and basis of linearly independent functions F_i define coupling matrix $C_{ik}=F_i(x_k)$
 - Condition number κ(C): ratio of largest to smallest eigenvalue of SVD(C) – Indicates sensitivity of fit to errors in measurements

- Expected poloidal wavelengths of external field and PR
- Capability to detect reluctance modes (ala Logan, Boozer)
- Bayesian approach within 3D equilibrium framework

Collect available plasma response calculations (pursue more A/N)

- MARS-F/K 🖌
 - Z. Wang/Park: Fluid and kinetic analysis of 2MA high beta NSTX-U model equilibria
- **IPEC/IPECOPT** (to meet with Park on Thursday)
 - Park/Lazerson/Logan: Analysis for NCC design
- M3D-C1 🖌
 - Evans/Canal: Analysis of NSTX-U model equilibria
 - Case 6 of 9: Ip=1.45 MA, Bt=1.0 T, q95=8.7 betaN=4.0
- VMEC/V3FIT

Synergy with GA TokSys Control Model Development

 Tool development for 3D magnetics proposal overlaps with control tool development in GA TokSys toolbox

• Examples

- Analysis of magnetic sensors in TokSys model supports general shape/current control model development
- Analysis of reluctance modes could use Greens functions from TokSys model

• GA TokSys code is now under git source control

- Can contact Brian Sammuli (sammuli@fusion.gat.com) for information on access to GA git server
- Work for 3D magnetics will occur under branch "3dmags"

Summary

- PPPL-GA collaboration focused on new 3D magnetics proposal for NSTX-U
- Lanctot onsite at PPPL Dec. 7-18
 - Workplan target is to complete steps 1-5 of proposed topics
 - Deliverable: Report on Completeness of existing magnetic measurements
- We at GA look forward to this fruitful collaboration!

Points of Discussion

- What are the highest priority physics objectives for NSTX-U team?
- What is a realistic timeline for completion of this project with respect to NSTX-U schedule?
- What would it take to install sensors on the centerstack?
 - Assume HFS B-field structure essential to resolve physics
 - Will consider requirements, feasibility even though heroism needed
- Is there a possibility to partner with MSE group to obtain internal magnetic field measurements?
 - Direct measurement of internal magnetic fields would be transformational
 - δB likely too small to resolve given present uncertainties