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Conceptual design of new 3D magnetic diagnostics on NSTX-U

is being developed as part of GA collaborative research

153480 153485

e Expanded magnetic sensor set on DIlI-D has enabled 9 @) Measurement by ]

improved understanding in many areas of 3D physics < 4 :_68 25 -

— Plasma response (including at high beta) s [ P 1.8 ]

— RMP ELM suppression Py 3 ;_(GIKA) 9

— Error field sensitivity and optimization T‘E;_ 2 ¢ ]

— 3D magnetic field torques E 1 %_
* GA-NSTXU collaboration leverages experience and tools ’ 05 00 05
developed during DIII-D upgrade Wall Height (m)
King, NF 2016

 Overview of DOE project milestones
— MI15. Evaluate completeness of existing magnetic diagnostics M
— M16. Report on conceptual design (in progress)
— M17. Report on final physics design
— MI18. Report on frequency response and noise evaluation of new sensors
— M19. Report on new experimental results with model comparisons
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* Highlights from Milestone 15 on completeness of existing magnetic diagnostics
— Recommendation for instrumenting existing HFS diagnostics

e Initial analysis of plasma response in NSTX-U with MARS

 Remaining steps to complete conceptual design (Milestone 16)
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Physics objectives drive the requirements for non-axisymmetric

field measurements (from DIII-D study)

Objectives

Plasma response (PR) to applied 3D fields
— PR to error fields and RMPs
— Direct measurement of EM torque
Equilibrium reconstruction
— Improve axisymmetric equilibrium reconstruction
— Full and perturbed 3D equilibrium reconstruction
Unstable plasma modes: low n, low frequency
— Poloidal structure of non-rotating modes n>1
— Poloidal structure of rotating modes
Unstable plasma modes: high n, high frequency
— Detection of ELM precursors
— Energetic particle instabilities
Disruption physics
— Runaway electrons & their instabilities
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Milestone 15: How NSTX-U 3D magnetic diagnostics are incomplete

3D Sensor Arrays

o Bp
= A Br

* Six 3D B field arrays exist on NSTX-U 1f

— Two 12-sensor B, & B, arrays on LFS above
and below the midplane (from NSTX)

Z(m)
o
e e S - Y N~ N~ S - . - Y - N - - Y- Y -

— One 12-sensor poloidal field array on HFS £ o
midplane (new, not yet instrumented) ™ ]
— One 5-sensor B; array on the HFS just
below the midplane (halo current diag.) 1T
-1+ G—
201 1y B2 IR R B B
0.0 0.0 05 1.0 1.5 2.0

* Existing sensors were evaluated in terms of ability to resolve toroidal and poloidal
structure of slowly-rotating and DC magnetic fields

— Toroidal distribution of sensors in existing arrays sufficient for n<=3 on LFS and HFS
— Poloidal distribution of sensor arrays insufficient to resolve poloidal structure
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Toroidal distribution of sensors in existing arrays sufficient for

n<=3 on LFS and HFS

 Number of sensors in toroidal array determined by number of interesting modes, k

— Required number of sensors to resolve k modes is 1+2*(k-1), yields n=0 amplitude and
n>0 amplitudes & phases

 Orthogonal measurements for given n are obtained for separations of 8¢ = 2rt/n/4

op 90 45 30 225 18 15

— Note: Existing Bp, Br sensors are 30 deg apart; Br sensors are 15 deg. wide toroidally
* High n (>3) measurements likely limited to Bp without new Br sensor design

 Often sensors must be spaced unequally so as to avoid existing hardware
— How does unequal toroidal spacing of probes impact error in inferred amplitude?
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Toroidal location of probes should be selected so as to minimize

the condition number of the resulting fit matrix

* Mode fit coefficients obtained by taking g | |
pseudo-inverse of a fit matrix A(n,¢) i (a) Condition number |
A;(n,¢)=[cos(n,g,) sin(np,)] ::
— Basis sets other than cos,sin are possible 4
3L
e Condition number (C) is ratio of the largest f
singular value of A to the smallest . | | | o -
— When C=1, error from fitis no worse thanthe [ T - " (b) Error multiplier
data (“error multiplier’=1) A
] 0 S S S
0 0.05 0.1 0.15 0.2 0.25

MJ Lanctot/NSTXU3DMags/Aug2016



Toroidal location of probes should be selected so as to minimize

the condition number of the resulting fit matrix

* Mode fit coefficients obtained by taking

8 , x
pseudo-inverse of a fit matrix A(n,¢) , (&) Condition number |
or n<
Azj(n’¢) — [COS(I’lj¢i) sin(njgbl.)] b—————— D3D (<2012)
5L
— Basis sets other than cos,sin are possible 4
3l
e Condition number (C) is ratio of the largest f-- ------------------ °3°‘>2°‘2’._w_____"
singular value of A to the smallest . | ideal
— When C=1, error from fit is no worse than the U T by Error multiplier
data (“error multiplier”=1) A
e Condition number & error multiplier increase as 3:“” R ,.
sensors deviate from ideal spacing (6¢/A=0.25) ol
— Compute for fit matrix A(n<4) i o
00 0.05 0.1 0.i15 0.2 0.25
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Toroidal location of probes should be selected so as to minimize

the condition number of the resulting fit matrix

* Mode fit coefficients obtained by taking

8 . ;
pseudo-inverse of a fit matrix A(n,¢) , (&) Condition number |
or n<
A, (n,¢)= [COS(n ) sin(njq)l.)] 6 ————~ D3D (<2012)
5L
— Basis sets other than cos,sin are possible 4
3l
D NSTX-U HFS |
* Condition number (C) is ratio of the largest
singular value of A to the smallest . | ideal
— When C=1, error from fit is no worse than the U T by Error multiplier
data (“error multiplier’=1) A
e Condition number & error multiplier increase as 3:“” R ,.
sensors deviate from ideal spacing (6¢/A=0.25) ol
— Compute for fit matrix A(n<4) i
— Existing NSTX-U arrays nearly as good or better |
than DIII-D upgrade (assuming same noise 0 . i
|eve|) 0 0.05 0.1 50 /1 0.15 0.2 0.25
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Initial design recommendation: Instrument Bp array on HFS

10

Bp sensor array on HFS should be instrumented as soon as possible

New data would be exiremely valuable
— Measure plasma response amplitude to validate models being used in design
e Existing models mainly validated at low edge g
— Document existing noise characteristics to inform toroidal spacing question
— Assess if existing sensor design is adequate

If MARS prediction (next section) correct and general, then it is unlikely additional
probes will be installed on the centerstack

— Sensor amplitudes are relatively small: <1 G/kA

Discussion: Is it possible to pursue this project in parallel with the PF coil repair?
— Propose we delay discussion until end of talk
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e Initial analysis of plasma response in NSTX-U with MARS
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Critical questions for analysis of plasma response in NSTX-U

Where on the wall is the plasma response localized?

e Is there sufficient field amplitude on the centerpost?

* |s there sufficient field amplitude at the Sensor “B” position?

* Which field components should be measured?

e What are the ideal probe dimensions?

* How many probes are needed to resolve the local poloidal wavenumber?

* How does the response amplitude and structure scale with plasma parameters?
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Critical questions for analysis of plasma response in NSTX-U

Where on the wall is the plasma response localized?
— Not on HFS

* |s there sufficient field amplitude on the centerpost?
— Likely marginal. Amplitude is <1 G/kA for n=1

* |s there sufficient field amplitude at the Sensor “B” position?
— Yes. Amplitude is similar to existing sensors

* Which field components should be measured?
e What are the ideal probe dimensions?
e How many probes are needed to resolve the local poloidal wavenumber?

* How does the response amplitude and structure scale with plasma parameters?
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This work focused on existing MARS analysis at high betaN

by Wang and Park

NSTX-U Target: 2 MA, 0.9T
— g.142301C94_2MA_bN5.5_qg6.9
Coil configurations:
— Midplane coil, Upper and lower NCC coll
This work looked at magnetic sensor set:
— NSTXU sensors + Midplane (HFS,LFS) + Sensor “B”

Ideal response

. NCC upper
. 7 __»__.

NCC Lower Midplane

Image: Park NCC White Paper
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MARS-F post-processing tools updated to analyze

results from MARS-Q

 Consider n=1 field from upper & lower NCC coils, A¢p=0 deg
— No wall or plates in calculation: Should be valid for DC or slowly rotating fields

« Compute sensor averaged fields
— See maximum of ~20 G/kA-t near NCC coils

MARS Vacuum Field - n=1 NCC A¢=0deg
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MARS-F post-processing tools updated to analyze

results from MARS-Q

 Consider n=1 field from upper & lower NCC coils, A¢p=0 deg
— No wall or plates in calculation: Should be valid for DC or slowly rotating fields
« Compute sensor averaged fields
— See maximum of ~20 G/kA-t near NCC coils
« Compute fields at wall for “radial” and “poloidal” field sensors
— Probe oriented along wall; Fine structure near sharp corners is artifact (will improve)
— Peak field is ~25 G/kA-t in front of coils (similar level as DIII-D |-coils)

MARS Vacuum Field - n=1 NCC A¢=0deg
MARS Vacuum Field - n=1 NCC A¢=0deg

25 "Radial" Se'nsor ' , 25 [ "poloidal" Sensor '
=3 field at Wall field at Wall
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Previous analysis shows single peak in response on LFS magnetics

* Scan of A¢ for n=1 shows single peak in response
— Maximum (minimum) occurs at A¢= 150 (330) deg for g95=6.9

* Rotation modifies kinetic response
— Amplitude is damped as rotation increased (consistent with increased stability)

Plasma rotation w=0.36w , Plasma rotation w=0.1w,
14 T T T T T T 15 T T T T
— fluid fluid
12+ NCC ﬂ:_]lid+r0t i NCC fluid+rot
kinetic — Kinetic
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Perturbed field is small and high m

at the plasma surface on the HFS

MARS Perturbed Fields - Plasma Response - w=0.1w,
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Expected changes in response from MARS at the midplane

requires sub-Gauss detection capability at 1kA coil current

Largest response Smallest response

MARS B Probes - Vacuum - A¢p=150
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In contrast, field amplitudes at Sensor “B” position are comparable

to existing signal amplitudes for strong coil-plasma coupling

e Sensor “B” position

estimate taken from
Sabbagh slides

~ (RZ) = (0.87,+/-1.53)

e Sensor “B” located near

the edge of the range of
poloidal angles with a
strong response field

e Result is consistent with

20

RWM feedback studies
by Columbia team
— Plasma response is
driven stable RWM

— Further study of field
on top/bottom in
progress
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* Remaining steps to complete conceptual design report (Milestone 16)
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Remaining steps to complete conceptual design report

(Milestone 16)

e Consider other plasma equilibria to determine if any targets have strong HFS
response. In particular, extend study to n>1 applied fields.

« Complete detailed study of probe positions on top/bottom

e Other remaining questions
— Which field components should be measured?
— What are the ideal probe dimensions?
— How many probes are needed to resolve the local poloidal wavenumber?
— How does the response amplitude and structure scale with plasma parameters?
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Discussion

* |Is it possible to pursue instrumentation of HFS Bp array in parallel with the PF coil
repair?

— Even if HFS signal levels too small o measure, hardware can be used for other new
Sensors
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