

ffice of asian nergy iences

Joint Experiment on ELM Mitigation with Midplane Control Coils

S. A. Sabbagh, T. Evans, D. Gates, R. Maingi, J.E. Menard, J.K. Park, many others...

Joint ELM Mitigation XP Meeting

January 28, 2008 Princeton Plasma Physics Laboratory

Columbia U Comp-X **General Atomics** INEL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** NYU **ORNL** PPPL PSI **SNL** UC Davis **UC** Irvine UCLA UCSD **U** Maryland **U New Mexico U** Rochester **U** Washington **U** Wisconsin Culham Sci Ctr Hiroshima U HIST Kyushu Tokai U Niigata U Tsukuba U **U** Tokvo **JAERI** loffe Inst TRINITI **KBSI** KAIST ENEA. Frascati CEA, Cadarache IPP, Jülich **IPP.** Garching U Quebec

Exploratory approach to finding ELM mitigation solution with midplane non-axisymmetric coils

Goal

- Demonstration of ELM mitigation with NSTX midplane RWM coil set
- Approach (complementary to other proposed plans)
 - Application of broader n spectrum of DC fields
 - Non-standard coil configs: (i) turn off one coil, (ii) turn off 5 coils, (iii) turn off every other coil, (iv) slow pre-programmed toroidal propagation of setup (iii)
 - New "n = 2" applied field capability for 2008, vary phase
 - Perturbations away from "n = 1" control currents (which have n = 1,5 dominant), superposition of n = 1 – 3, higher n
 - Bonus: Can get NTV rotation braking data piggyback!
 - Application of AC fields
 - Pre-programmed toroidal propagation of several DC setups mentioned above
 - □ Might stimulate ELM to allow to transform large ELMs into smaller (acceptable) ELMs
 - Now examining existing ELM mitigation evidence from past RWM, NTV experiments
 - N = 1 feedback
 - □ Can best feedback configuration from 2007 alter ELM dynamics?
 - Take best approach above and run in closest ITER shape w/ELMS

Experimental Configurations discussed to date

- Discussion / analysis delayed for several reasons still underway
 - Plan to bring together strawman run plan this week for comment
- Configurations discussed to date
 - Application of broader n spectrum of DC fields
 - Combination of n = 2 and n = 3 fields
 - Application of n = 6 field (primary is n = 0 field)
 - Suggestion of n = 1 and n = 2 fields of high enough amplitude to bring $V_{\phi} = 0$
 - n = 3 ELM destabilization shots with NBI torque scan (examine V_b effect)
 - Application of AC fields
 - Pre-programmed fields
 - n = 2, 3 non-rotating field configurations, AC variation of amplitude to cyclically affect rotation; combined field and rotation variation to affect ELMs (changes to grad(P), J)
 - \square n = 1 rotating fields both co- and counter propagating; n = 2 time-varying phase
 - N = 1 feedback
 - Few ms rise time ok for feedback, but amplitude, mode number is going to be key (e.g. shot 123474 ELMs too small amplitude to be detected; needs strong n = 1 component)
 - Giant" ELMs show n = 1 ΔB_r rise (also n = 2 and n = 3), ΔB_p responds to ELM crash possibly feedback on ΔB_r

Direction of applied n=1 traveling wave alters RWM stability

<u>Unstable RWM avoided with rapidly rotating n = 1</u>

