

ffice of asian nergy ciences

Joint Experiment on ELM Mitigation with Midplane Control Coils

S. A. Sabbagh, T. Evans, D. Gates, R. Maingi, J.E. Menard, J.K. Park, many others...

Joint ELM Mitigation XP Meeting

February 4, 2008 Princeton Plasma Physics Laboratory

Columbia U Comp-X **General Atomics** INEL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** NYU **ORNL** PPPL PSI **SNL** UC Davis **UC** Irvine UCLA UCSD **U** Maryland **U New Mexico U** Rochester **U** Washington **U** Wisconsin Culham Sci Ctr Hiroshima U HIST Kyushu Tokai U Niigata U Tsukuba U **U** Tokvo **JAERI** loffe Inst TRINITI **KBSI** KAIST ENEA. Frascati CEA, Cadarache IPP, Jülich **IPP.** Garching U Quebec

Considerations for Joint ELM Mitigation XP Run Plan

Target Plasmas and General Approaches

- What target(s) should be used?
 - Giant ELMs, or smaller ELMs?
 - What variation of q95?
 - What plasma shape, DRSEP, etc. ?
- DC applied fields
 - Decide on "most favorable" approaches (see strawman run plan)
- AC applied fields
 - Still examining effect ELMs, connection to toroidal rotation (SAS)
- □ n = 1 feedback use B_r feedback on ELMs with frequency < 1kHz
- Technical Logistics of the Run Plan
 - Application of non-standard DC fields will require overnight buswork change
 - Group similar needs on same day, put special needs on 0.5 day with another XP not needing RWM coil current
 - Iterate run plan, review XP by 2/11/08

Joint ELM Mitigation XP - Run plan (STRAWMAN)

<u>Task</u>	Number of Shots
1) Create targets (i) below, but near and (ii) above ideal no-wall beta limit (control shots)	
(use 125271 (large ELMs) as setup shot, 2 or 3 NBI sources, relatively high $\kappa \sim$ 2.0 or above to a modes)	avoid strong rotating
A) No non-axisymmetric field, 2-3 NBI sources, q95 ~ 8	2
B) Reduce q95 ~ 6 (NOTE: attempt lower q95 than this?)	2
2) Attempt ELM mitigation with DC fields	
A) $n = 2 + 3$ fields	6
B) n = 2 fields, change phasing, amplitude	4
C) n = 3 fields, change amplitude (change NBI torque???)	4
D) $n = 6$ fields by producing primary $n = 0$ field	2
E) Try n = 1 (???); change NBI torque (???)	4
3) Attempt ELM mitigation with AC fields	
A) pre-programmed, match ELM frequency, not-propagating (20 < f(Hz) < 800)	2
B) pre-programmed, match ELM frequency, co-propagating (20 < f(Hz) < 800)	2
B) pre-programmed, match ELM frequency, counter-propagating (20 < f(Hz) < 800)	2
C) n = 1 B _r feedback, vary (i) gain (ii) phase	8
4) Additional scans	

Total 38

Extra Slides

Exploratory approach to finding ELM mitigation solution with midplane non-axisymmetric coils

Goal

- Demonstration of ELM mitigation with NSTX midplane RWM coil set
- Approach (complementary to other proposed plans)
 - Application of broader n spectrum of DC fields
 - Non-standard coil configs: (i) turn off one coil, (ii) turn off 5 coils, (iii) turn off every other coil, (iv) slow pre-programmed toroidal propagation of setup (iii)
 - New "n = 2" applied field capability for 2008, vary phase
 - Perturbations away from "n = 1" control currents (which have n = 1,5 dominant), superposition of n = 1 – 3, higher n
 - Bonus: Can get NTV rotation braking data piggyback!
 - Application of AC fields
 - Pre-programmed toroidal propagation of several DC setups mentioned above
 - □ Might stimulate ELM to allow to transform large ELMs into smaller (acceptable) ELMs
 - Now examining existing ELM mitigation evidence from past RWM, NTV experiments
 - N = 1 feedback
 - □ Can best feedback configuration from 2007 alter ELM dynamics?
 - Take best approach above and run in closest ITER shape w/ELMS

Direction of applied n=1 traveling wave alters RWM stability

<u>Unstable RWM avoided with rapidly rotating n = 1</u>

