

Halo Current and Current Quench Rate Characteristics During Disruptions in NSTX

College W&M **Colorado Sch Mines** Columbia U Comp-X **General Atomics** INEL Johns Hopkins U LANL LLNL Lodestar MIT Nova Photonics New York U **Old Dominion U** ORNL **PPPL** PSI Princeton U SNL Think Tank. Inc. UC Davis UC Irvine UCLA UCSD **U** Colorado **U** Maryland **U** Rochester **U** Washington **U** Wisconsin

S.A. Sabbagh¹ / S.P. Gerhardt²

¹Department of Applied Physics, Columbia University, New York, NY, USA ²Plasma Physics Laboratory, Princeton University, Princeton, NJ, USA

For the

NSTX Macroscopic Stability Topical Science Group

12th Meeting of the ITPA MHD Stability Topical Group October 20-22, 2008 CRPP, Lausanne, Switzerland

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kvoto U Kvushu U Kyushu Tokai U **NIFS** Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST ENEA. Frascati CEA, Cadarache **IPP, Jülich IPP.** Garching ASCR, Czech Rep **U** Quebec

Examining disruption eddy currents, halo currents, and Ip current quench in the spherical torus

Goals

- Provide electromagnetic loading data for future ST design
- Examine ST specific characteristics to enhance tokamak knowledge base

Considerations

- \Box High elongation more subject to n = 0 instability during vertical motion (VDE)
 - General issue: disruption I_P quench drives eddy currents (I_C) in nearby conducting structures (C); currents lead to significant JxB forces on in-vessel components
 - $\tau_c (L_C/R_C \text{ time})$ long: total flux change matters
 - \Box τ_c short: instantaneous flux change matters

Strong 1/R B_t variation in ST makes center column halo currents a large concern

- Halo currents can flow linking the plasma and in-vessel components when plasma comes in contact with plasma facing components
 - Currents are parallel to B in the plasma edge; distributed to vessel based on inductance/resistance
- Disruptions are faster in the ST vs. conventional aspect ratio

Expand studies to wider range of disruption conditions/plasma parameters

Disruptions analyzed over a wide range of plasma conditions

Disruption database

- Greater than 900 shots, covering all operational regimes
- Select shots with fast current quenches, large halo currents
- Maximum halo current in all measured paths, current quench characteristics

Dedicated experiment in 2008

- Triggered VDEs
- \Box I_P and B_T scans at fixed shape, NBI power
- Detailed tracking of vertical motion
- More accurate characterizations than in large database analysis

New measurements allow study of additional halo current paths

Downward Going Disruption With Large Halo Currents

Shot 129449 Downward Going VDE (PF3 Voltage Freeze + Offset) Current Flows OUT of Divertor Plate

Typical Pattern for Dedicated VDE Experiment

More Limited Measurements for Upward Going VDE

Leads to Largest Center Stack Casing Currents

Halo Currents In Vessel Bottom Scale as I_P/q, Consistent With Simple Models

Simple explanation of scaling (P.J. Knight, et al., Nucl. Fusion 40 (2000) 325.)

- \Box I_p: Halo currents increase with I_p
- q: halo currents flow parallel to B, poloidal component increases if q decreases

Scaling coefficient independent of working gas, P_{NBI}, shape

Vessel Bottom Currents Largest in Triggered VDE Experiments

Solid Symbols: Deliberate VDEs (XP833 & XP811), Open Symbols: All Others

Simplified conclusion

- Upward VDEs: 60 kA max center stack casing current, no observed scaling with I_P²/B_T, I_P/B_T, or I_P
- <u>Downward VDEs</u>: I_P²/B_T scaling for currents into outboard divertor

Toroidal Peaking Factor Decreases With Halo Current Fraction

Inner Ring, TPF vs. HCF

D Toroidal peaking factor TPF = 6^* max(B_i=1:6) / Σ Bi

Uncertainty larger at small halo current fraction (HCF)

- □ ITER Assumption: TPF×HCF < 0.75
 - NSTX Data Well Below This Scaling

Current Quench Rates Are Fast in the ST

Past ITPA result

Quench rate important in determining the eddy current drive

1000

a)

dB/dt at Lower outboard divertor

- Points sorted by the axis vertical position just before the disruption
- Ip-normalized dB/dt increases with quench rate
- Scatter in data due to details of plasma motion and shape

1.30

Lower Outboard Divertor

Geometry and plasma motion affects local field variation

- At low δ, Shaping field coil current attracts plasma toward sensor coil during VDE
 - maximizes measured dB/dt
- Same result for upward-going VDE and upper sensor coil

- Large positive values due to large values of dlp/dt during quench
- Large negative values due to rapid downward plasma motion (~constant I_p)
- Current quench effect is dominant, but only factor 2 larger

Halo currents, eddy currents, and current quench rates investigated in ST geometry

- □ Large database relevant to disruption EM loading
- Halo currents up 150kA measured with new diagnostics, I_P/q₉₅ scaling, in outboard divertor
- Halo currents up to 60 kA, and no observed scaling, on center stack casing
- Fastest I_P quenches of 1GA/s, with instantaneous rates often much faster than the average
- Current quench rate, plasma geometry, plasma motion important in determining the local eddy current drive

Planned for Next Run Campaign

- Toroidally extended halo current measurements into four liquid lithium divertor (LLD) sectors
 - Toroidally localized halo current measurements at four positions at LLD
 - Fast (> 1.5 kHz) IR thermography for thermal quench studies

Backup slides follow

12th ITPA MHD Meeting 10-2008 - S.A. Sabbagh/S.P. Gerhardt 14

NSTX Disruption Studies Contribute to ITER, Aim to Predict Disruption Characteristics & Onset For Future Large STs

- Fastest NSTX disruption quench times of 0.4 ms/m², compared to ITER recommended minimum of 1.7 msec/m²
- Reduced inductance at high-κ, low-A explains difference

$$\frac{\tau_{L/R}}{S} = \frac{\mu_0}{2\pi\eta} \left[\ln\left(\frac{8}{\sqrt{\kappa\varepsilon}}\right) - \frac{7}{4} \right]$$

- New instrumentation in 2008 yields significant upward revision of halo current fractions (now up to 20%)
 - reveals scaling with I_P and B_T
 - Mitigating effect: Largest currents for deliberate VDEs
- Toroidal peaking reduced at large halo current fraction

Expand Results For a Complete Characterization of Disruption Dynamics, Including Prediction Methods