

Studies of 2/1 NTM onset threshold vs. rotation and rotation shear in NSTX

College W&M **Colorado Sch Mines** Columbia U Comp-X **General Atomics** INEL Johns Hopkins U LANL LLNL Lodestar MIT Nova Photonics New York U **Old Dominion U** ORNL **PPPL** PSI Princeton U SNL Think Tank. Inc. UC Davis UC Irvine UCLA UCSD **U** Colorado **U** Maryland **U** Rochester **U** Washington **U Wisconsin**

S.A. Sabbagh¹ / S.P. Gerhardt²

¹Department of Applied Physics, Columbia University, New York, NY, USA ²Plasma Physics Laboratory, Princeton University, Princeton, NJ, USA

For the

NSTX Macroscopic Stability Topical Science Group

12th Meeting of the ITPA MHD Stability Topical Group October 20-22, 2008 CRPP, Lausanne, Switzerland

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kvoto U Kvushu U Kyushu Tokai U **NIFS** Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST ENEA. Frascati CEA, Cadarache **IPP, Jülich IPP.** Garching ASCR, Czech Rep **U** Quebec

Research to determine NTM onset conditions in high beta ST

Goals

- Categorize NTM trigger mechanisms in a high-β, rapidly-rotating plasma
- Determine onset and stabilization criteria for NTMs

Outline

- NTM characteristics in high beta ST plasmas
- Various NTM triggering mechanisms
- Relation of NTM onset and magnitude of plasma rotation
- Correlation of NTM onset with toroidal flow shear at q = 2 surface

Observed characteristics indicate 2/1 NTM

- □ Characteristic linear dependence of island width ~ $B_p^{0.5}$ on β_p
- Restabilization (before locking or H→L) achieved in a single case

(R. LaHaye NSTX XP810)

- Resonant plasma rotation braking at q = 2 surface
- Clear outward momentum transfer across q = 2
- Saturated state has rotation constant inside of q = 2 (rigid rotor core)

Core 1/1 mode associated with 2/1 NTM

USXR measurement and simulation

axis

q = 2

q = 2

- No free parameters in model
 - Phase inversion across q = 2 surface in both experiment and simulation
- **USXR** oscillation frequency matches that of magnetic pickup coils
- Additional phase inversion seen in experiment on axis
 - Indicates odd-m in core region (m=1)
 - Not included in the island model

NTM onset observed triggered by EPMs

Energetic particle mode (EPM) trigger

- Chirping mode activity
- NTM onset coincident with EPM; drop in the neutron rate
- Mode onset frequency close to, or a bit above V_b at q = 2

NTM onset observed triggered by ELMs

ELM Trigger

- □ Mode onsets with an ELM (D α)
- frequency at onset is much less than q=2 rotation frequency

NTM onset can occur with no apparent trigger

Spontaneous NTM

- Mode onset frequency near V_{ϕ} at q = 2
- All trigger mechanisms share common features
 - Frequency quickly approaches that of the q=2 surface
 - T flat-spots at q=2, collapse of rotation inside of q=2

Database of 53 Discharges Assembled to Study Trends

- Include different beam timing
- Various V₀ by varying n=3 non-resonant braking levels
- Consider limited range of shapes, I_p, B_t:
 - 2.1<к<2.42</p>
 - □ 0.57<l_i<0.8
 - □ 0.5<δ_l<0.83
 - □ 900kA<I_p=1000kA
 - $\Box B_T = 0.45T$

Trigger Type Indicated with Symbol Color

"Spontaneous"

EPM Trigger

ELM Trigger

- Range of Shots Allows Separation of Rotation and V_{\u03c6} Shear Effects
 - Unfortunate Co-Linearity for ELM Trigger Cases

NTM onset frequency depends on triggering mechanism

Required drive for NTM onset is independent of mode propagation frequency

□ NTM drive at onset uncorrelated with frequency in $E_r = 0$ frame

rotation dependence of polarization term suggest that this term is not playing a large role

Required drive for NTM onset better correlated with rotation shear than rotation magnitude

For fixed V_{\u03c6}, order of increasing onset drive: EPM triggers, ELM triggers, and "Triggerless"

All trigger types have similar dependence on flow shear

Dependence likely to related to intrinsic tearing stability, not triggering

Statistically, NTM Drive Best Correlated with Local Flow Shear

	All Cases	EPM	ELM	ŅTiggerlessÓ
		Triggered	Triggered	
1: F⊤ @ q=2	0.098	0.002	0.445	0.018
2: dF _T /dr @ q=2	0.048	0.085	0.114	0.075
3: L _s τ _A (dF _T /dr)	0.409	0.456	0.605	0.354
4: (F _{T,q=2} -F _{T,q=3})	0.153	0.092	0.336	0.365
5: τ _A (F _{T,q=2} -F _{T,q=3})	0.195	0.162	0.395	0.376
6: $\tau_A^{2/5} \tau_R^{3/5} (F_{T,q=2}-F_{T,q=3})$	0.222	0.103	0.426	0.310
7: $\rho_{\theta,i} \epsilon^{1/2}$	0.284	0.009	0.416	0.139

EPM Cases

• The ONLY correlation is with rotation shear.

ELM Cases:

• Lots of colinearity in the data (flow vs. flow shear. Vs differential rotation), but best correlation is with flow shear.

"Triggerless" Cases:

More scatter in data, equally good correlation with flow shear and differential rotation.
Additional physics may be playing a role, including q₀~1 and β_N near ideal kink limit

NTM onset examined in high beta ST plasmas

- \square m/n = 2/1 NTMs observed, typically coupled to 1/1 core modes.
- □ Large variation in NTM drive at the time of onset for a dataset of limited I_p , B_T , and shape, but with a large variety of V_{ϕ} profiles,
- Three typical onset conditions, in order of increasing NTM drive at onset:
 - Triggered by an EPM, often near saturated width, along with drops in the neutron rate
 - Triggered by an ELM, with the mode frequency starting much less than the q=2 frequency
 - No visible trigger
- Best correlation is found between NTM onset drive and flow shear at q=2 (inferior correlation with flow magnitude or differential rotation)
- As in DIII-D, results tend to indicate the flow-shear effect is related to intrinsic tearing stability

