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Research advances to understanding mode stabilization physics 
and reliably maintaining the high beta plasmas

Motivation

Maintenance of high βN with sufficient physics understanding allows 
confident extrapolation to ITER and CTF

Outline

Active control of beta amplified n = 1 fields / global instabilities

Mode dynamics and evolution during active control

Control performance compared to theory, connection to ITER

Kinetic effects on resistive wall mode (RWM) stabilization

Non-axisymmetric field influence on plasma rotation profile

CTF: βN = 3.8 – 5.9  (WL = 1-2 MW/m2) ST-DEMO: βN ~ 7.5 

- Both at, or above ideal no-wall β-limit; deleterious effects at ~ ½ βN
no-wall

- high βN accelerates neutron fluence goal - takes 20 years at WL = 1 MW/m2)
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RWM active stabilization coils

RWM sensors (Bp)

RWM sensors (Br)

Stabilizer
platesStabilizer plates for kink 

mode stabilization

External midplane control 
coils closely coupled to 
vacuum vessel

Varied sensor combinations 
used for feedback

24 upper/lower Bp: (Bpu, Bpl)

24 upper/lower Br: (Bru, Brl)

NSTX equipped for passive and active RWM control 
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Active RWM control and error field correction maintain 
high βN plasma

n = 1 active, n = 3 DC control
n = 1 response ~ 1 ms < 
1/γRWM

βN/βN
no-wall = 1.5 reached

best maintains ωφ

NSTX record pulse lengths
limited by magnet systems

n > 0 control first used as 
standard tool in 2008

Without control, plasma more 
susceptible to RWM growth, 
even at high ωφ

Disruption at ωφ/2π ~ 8kHz 
near q = 2

More than a factor of 2 higher 
than marginal ωφ with n = 3 
magnetic braking
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Probability of long pulse and <βN>pulse increases significantly 
with active RWM control and error field correction

Standard H-mode operation shown

Ip flat-top duration > 0.2s (> 60 RWM 
growth times)

Ip flat-top duration (s)
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Control off (908 shots)

Control on (114 shots)

Control on

Control off

Control allows <βN>pulse > 4

βN averaged over Ip flat-top
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During n=1 feedback control, unstable RWM evolves into 
rotating global kink
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Resonant field amplification 
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Initial transition from RWM to 
saturated kink

Tearing mode appears after 10 
RWM growth times and stabilizes
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ITER support: Low ωφ, high βN plasma not accessed when 
feedback response sufficiently slowed

Low ωφ access for 
ITER study

use n = 3 braking

n = 1 feedback 
response speed 
significant

“fast” (unfiltered) 
n = 1 feedback 
allows access to 
low Vφ, high βN

“slow” n = 1 
“error field 
correction”
(75ms smoothing 
of control coil 
current) suffers 
RWM at ωφ ~ 
5kHz near q = 2

RWM

n = 3 correction

n = 3 braking

slow feedback fast feedback
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ITER support: Low ωφ, high βN plasma not accessed when two 
feedback control coils are disabled

Low ωφ access for 
ITER study

use braking

n = 1 feedback 
doesn’t stabilize 
plasma with 2 of 6 
control coils 
disabled

scenario to 
simulate failed 
coil set in ITER

Feedback phase 
varied, but no 
settings worked

RWM onset at 
identical time, 
plasma rotation

RWM
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VALEN, STARWALL, & CarMa in good agreement on passive 
RWM growth with 3D ITER Vacuum Vessel

Single-Mode model in all codes
Complex 3D ITER VV models for passive RWM growth rates in 
Scenario 4 plasma 

With ports With ports and extensions
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ITER blanket modules affect RWM passive stability 
significantly more than port extensions

Double-walled vacuum vessel with 
port extensions (STARWALL model)

50% change to growth rate 
with port extensions alone

Far greater change w/blankets
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Multi-mode version of VALEN now being tested and 
compared to experiment

RWM growth rate decreases rapidly 
with increased number of modes up 
to ~ 40 modes

Larger mode spectrum 
decreases poloidal variation 
of mode amplitude
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mmVALEN shows modest qualitative changes to n = 1 RWM 
structure in DIII-D

Multi-mode pattern shows influence of resistive wall 
Eigenfunctions with n = 1 used
Code capable of including higher n modes - to be tested and compared to 
experiment
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Non-resonant magnetic braking allows Vφ modification to probe 
RWM critical rotation and stabilization physics

Slowest rotation profiles produced in NSTX are at DIII-D balanced-NBI levels

Ion collisionality profile variation appears to alter experimental Ωcrit profile

Scalar plasma rotation at q = 2 
inadequate to describe stability

Marginal stability βN > βN
no-wall, ωφ

q=2 = 0

Ωcrit doesn’t follow simple ω0/2 
rotation bifurcation relation
A.C. Sontag, et al., NF 47 (2007) 1005.
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Simple critical ωφ threshold stability models or loss of torque balance do 
not describe experimental marginal stability

Kinetic modification to ideal MHD growth rate

Trapped and circulating ions, trapped electrons

Alfven dissipation at rational surfaces

Stability depends on

Integrated ωφ profile: resonances in δWK (e.g. ion precession drift)

Particle collisionality

Modification of Ideal Stability by Kinetic theory (MISK code) 
investigated to explain experimental stability
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Stabilizing influence of kinetic effects changes as 
plasma rotation varies

Low ωφ : kinetic effects relatively small   => plasma unstable
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High ωφ : circulating ion stabilization increases   => plasma stable
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Non-resonant rotation braking produced using n = 2 field

n = 2 has broader braking profile than n = 3 field (from field spectrum)

Rotation evolution during n = 2 braking Rotation evolution during n = 3 braking

broader 
braking region

than n = 3
case
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Stronger non-resonant braking at increased Ti

Examine Ti
dependence of 
neoclassical toroidal
viscosity (NTV)

Li wall conditioning 
produces higher Ti in 
region of high 
rotation damping

Expect stronger NTV 
torque at higher Ti
(-dωφ/dt ~ Ti

5/2 ωφ)
At braking onset, 
Ti ratio5/2 = 
(0.45/0.34)5/2 ~ 2

Consistent with 
measured dωφ/dt in 
region of strongest 
damping
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n = 2 non-resonant braking evolution distinct from resonant
Non-resonant:

broad, self-similar reduction of 
profile
Reaches steady-state (t = 0.626s)

128882
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Resonant: 
Clear momentum transfer across 
rational surface
evolution toward rigid rotor core
Local surface locking at low ωφ
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Advances in global mode feedback control, kinetic 
stabilization physics and magnetic braking research

Active n = 1 control, DC n = 3 error field correction maintain 
high βN plasma over ideal βN

no-wall limit for long pulse

Growing RWM converts to kink that stabilizes; can yield tearing mode

Control performance compares well to theory

Significant βN increase expected for ITER with proposed internal coil 

Kinetic modifications to ideal stability can reproduce behavior 
of observed RWM marginal stability vs. Vφ

Simple critical rotation threshold models for RWM stability inadequate

Non-resonant Vφ braking observed due to n = 2 applied field

Braking magnitude increases with increased Ti
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