

<u>XP804: Comparison of NTV among</u> tokamaks (n = 2 fields, v_i scaling)

S.A. Sabbagh¹, R.E. Bell², J.W. Berkery¹, J.M. Bialek¹, S. Gerhardt², B. LeBlanc², J.E. Menard², K. Tritz³

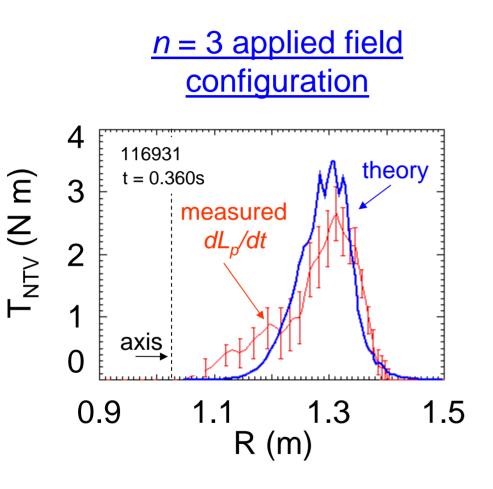
¹Department of Applied Physics, Columbia University, New York, NY ²Plasma Physics Laboratory, Princeton University, Princeton, NJ, USA ³Johns Hopkins University, Baltimore, MD, USA

January 10th, 2008 Princeton Plasma Physics Laboratory

Columbia U Comp-X **General Atomics** INEL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** NYU ORNL **PPPL** PSI **SNL** UC Davis **UC** Irvine UCLA UCSD **U** Maryland **U New Mexico U** Rochester **U** Washington **U** Wisconsin Culham Sci Ctr Hiroshima U HIST Kyushu Tokai U Niigata U Tsukuba U **U** Tokvo **JAERI** loffe Inst TRINITI **KBSI** KAIST ENEA. Frascati CEA, Cadarache IPP, Jülich **IPP.** Garching U Quebec

Department of En

<u>XP804: Comparison of neoclassical toroidal viscosity</u> (NTV) among tokamaks (n = 2 fields, v_i scaling)

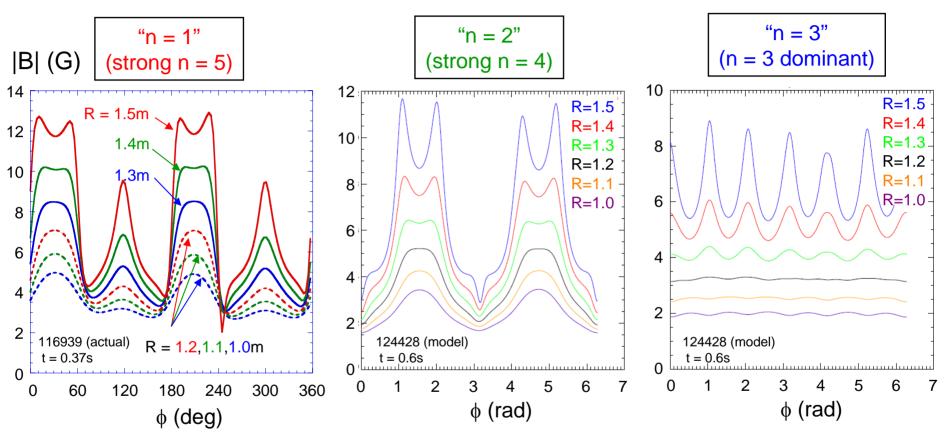

Goals

- Compare NTV results/analysis on NSTX to other devices
 - n = 2 data available JET, C-MOD, initial results in MAST (plan to submit 08 XP)
 - Proposal submitted in 2008 to DIII-D, morphed into different XP (running today!)
- Test NTV theory for n = 2 applied field configuration
 - n = 2 may be best for comparison to other devices (n = 1 strongest resonant rotation damping, n = 3 weak in some devices, many machines run n = 2)
 - Examine possible RFA effects by varying proximity to no-wall limit
- Investigate damping over widest possible range of ion collisionality to determine affect on rotation damping and compare to theory
 - Key for ITER, comparison to other devices important
- Supplement past published NSTX results (XP524) using n = 1, 3 fields
 - Modifications to theory to be examined (e.g. multiple trapping states)
 - Reversed I_p operation may allow ω_{ϕ} offset term measure (~ few kHz)

Addresses

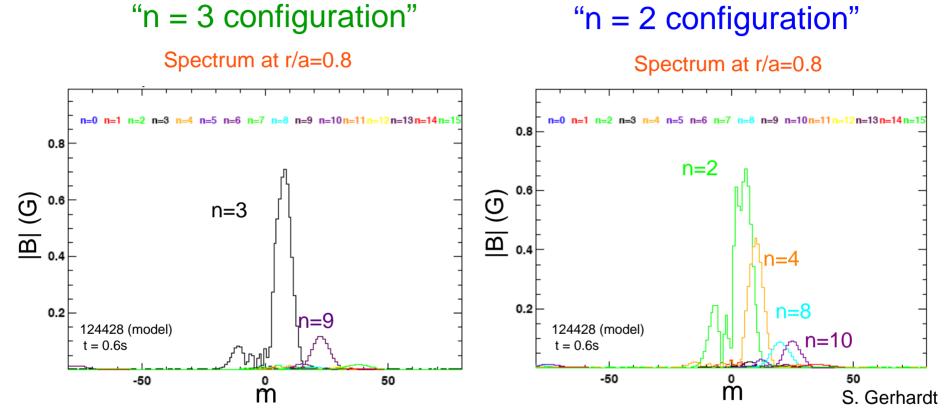
- Joule milestone, leverages ST geometry
- ITER support (RWM coil design), ITPA joint experiment MDC-12

Observed rotation decrease follows NTV theory


(Zhu, et al., PRL 96 (2006) 225002.)

- Further test NTV theory; compare to other devices
 - Trapped particle effects, 3-D field spectrum important for quantitative agreement
 - □ Scales as $\delta B^2(p_i/v_i)(1/A)^{1.5}$
 - Low collisionality, v_i, ITER plasmas expected to have higher rotation damping
 - Saturation of 1/v_i scaling expected by theory, can it be found?

Approach


- □ Use n = 2 field to slow ω_{ϕ} at low, high β_{N} (check RFA)
- Vary collisionality (as in past XPs) to produce ~ at least a factor of 2 variation in NSTX

Significant differences in |B| between n = 1, 2, 3applied field configurations

- Field more uniform vs. toroidal angle in higher n configuration
- Smaller n spectrum in higher n configuration

Broader field spectrum in n = 2 config vs. n = 3 config

- Broader spectrum and greater radial penetration should lead to larger NTV damping and extended radial profile
- n = 2 configuration has very small n = 1 component reduces resonant braking and n = 1 NTV due to RFA

<u>XP804: NTV n = 2 and v_i - Run plan</u>

Task Num	ber of Shots
1) Create targets (i) below, but near and (ii) above ideal no-wall beta limit (control shots)	
(use 120038 as setup shot, 2 or 3 NBI sources, relatively high $\kappa \sim 2.4$ to avoid rotating mode	s)
A) No n = 2 applied field; 3, 2, and 1 NBI source	3
2) <u>Apply $n = 2$ field</u>	
A) Step up n = 2 currents during discharge in 75ms steps, 3 NBI sources	2
B) Step up n = 2 currents during discharge in 75ms steps, 1 or 2 NBI sources	2
C) n = 2 DC pulse at steady ω_{ϕ} , measure spin down, pulse off to measure ω_{ϕ} spin-up, 3 NBI	3
D) n = 2 DC pulse at steady ω_{ϕ} , measure spin down, pulse off to measure ω_{ϕ} spin-up, 1 or 2	NBI 3
3) <u>Ion collisionality scan</u>	
A) Vary v_i at constant q, apply $n = 2$ field during period free of strong rotating modes	8
B) Increase n = 2 field at collisionality where damping is weakest	3
4) <u>Reversed I_p scans</u>	
A) Repeat scans 1 and 2 above in reversed Ip	<u>13</u>
Total (standard I _p ; reve	ersed I _p): 24; 13

NSTX

<u>XP804: NTV n = 2 and v_i - Diagnostics</u>

Required diagnostics / capabilities

- Ability to operate RWM coils in n = 2 configuration
- Internal RWM sensors
- CHERS toroidal rotation measurement
- Thomson scattering
- USXR
- MSE
- Toroidal Mirnov array / between-shots spectrogram with toroidal mode number analysis
- Diamagnetic loop
- Desired diagnostics
 - FIReTip
 - Fast camera

