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Examine effects on ELMs, plasma rotation using new 
midplane coil configurations

• Motivation

Potential simplification of coils 
for ELM control/mitigation 
desired/required in tokamaks
(e.g. ITER) – midplane coils 
enough?

Will even parity, non-resonant 
fields effect plasma rotation? –
future Vφ profile control

• Applied fields from reconfigured 
coil circuitry

New field spectra add 
dominant even parity fields to 
past odd parity configurations

RWM active stabilization coils

RWM sensors (Bp)

RWM sensors (Br)

Stabilizer
plates
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Exploratory approach to ELM control with midplane non-
axisymmetric coils 

• Follows past NSTX experiments by T. Evans, et al.
n = 3 fields: ELM suppression not reproducible, ELM triggering observed

• Approach
Target development

• Run with reduced q95 = 6 – 8 thought to be superior for mitigation

• Variation of q95 in this range to insure mitigation not missed due to possible 
resonance effects

Application of DC fields
• Past odd parity fields (n = 3) operating on lower q95 target

• New even parity field (n = 2, with strong n = 4) capability for 2008

• New combined odd/even parity (n = “2 + 3”)

Application of AC fields

• Using either/both odd and even parity fields

Repeat best cases in low recycling plasmas with lithium first wall preparation
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New n = 2 configuration used to compare to past n = 3 results

n = 2 field configuration (planform view) n = 3 field configuration (planform view)
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Broader field spectrum in n = 2 vs. n = 3 configuration

• Broader spectrum and greater radial penetration should lead to larger non-
resonant damping by neoclassical toroidal viscosity (NTV)

• n = 2 configuration has very small n = 1 component – reduces resonant braking 
and n = 1 NTV due to resonant field amplification
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IPEC used to analyze Chirikov parameter
Ideal Perturbed Equilibrium Code (IPEC)  

J.-K. Park, et al., Phys. Plasmas 14, 052110 (2007).

• Ideal MHD plasma response to 
applied field included in IPEC

IPEC Chirikov computed using 
field jump at rational surfaces

NSTX n = 3 field config., q95 = 5.5

123662 t=0.350s (model)

n = 3

n = 3

n = 2

n = 1

DIII-D: IPEC Chirikov for ELM mitigation
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Vacuum and IPEC computed Chirikov parameter > 1 near edge 
for n = 2, n = 3 field configurations used in experiments

• IPEC shows n = 4 significantly reduced

Vacuum Chirikov
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n = 2 field configuration, q95 = 7.4 n = 3 field configuration, q95 = 7.7
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• n = 3 Chirikov > 1 at ψN ~ 0.8
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Reduced ELM frequency, increased Dα duration observed in 
AC applied field configurations

• ELMs broaden, roughly match frequency of applied field
• Broadening due to multiple ELMs/filaments “compounded” together

effectively decreases frequency

n = 2 AC field, 70 Hz, 5.5 kA peak-to-peak
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USXR chords (lower array)

SOL

Core

Lower Div.

Compound ELMs distinguished from single ELM with USXR

Compound ELM

127520
t = 0.295s

R(m)

Z
(m

)

“ELM”

• Apparent multiple ELM events follow initial 
USXR drop
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Soft X-ray detail supports compound ELM leading to 
multiple energy expulsions

• Also, fast camera data
Single ELM shows 
single filament
Compound ELM 
shows more than one 
filament
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ELMs modified with either DC or AC fields

n = 2 AC field, 70 Hz vs. no fieldn = 2 DC field vs. no field
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Mixed “2 + 3” field configuration tested for potential increase 
in edge ergodization

• Chirikov > 1 for n = 2, 3, 4 over 
significant portion of edge 
plasma

Vacuum and IPEC calculations

• Chirikov > 1 penetrates further 
to core than separate n = 2, 3 
field configurations

J-K. Park

Vacuum Chirikov
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n = 2+3 configuration (planform view) n = 2+3 configuration n, m spectrum

New n = “2+3” configuration with broader field spectrum used

• Broadest n, m spectrum of all 
configurations attempted

• n = 2, 3 components strongest

Significant n = 0 component 
cancelled by vertical stability control

127905
t = 0.35s
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ELMs not mitigated with n = 2 + 3 field; frequency reduced
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• Decrease in ELM frequency at maximum allowed field
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Lithium input to reduce recycling led to ELM mitigation 
without applied field; field triggers ELMs

• As found in XP728 
(Mansfield, et al.) 

Reproduced with 
significantly smaller Li 
evaporation here

• Similar line-averaged ne
evolution

• Significant increase in 
βN with lithium pre-ELM

• Non-axisymmetric field 
used to trigger ELMs for 
impurity control (see J. 
Canik, next talk)
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L-H threshold time can be delayed by application of RMP 
during Ip ramp

• Useful tool for L-H 
transition physics 
experiments

• Control shot (no 
applied field) 

• n=3 AC applied field

• n=3 AC with DC 
offset during Ip ramp

Delayed H-mode

Compound ELMs
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Even parity non-axisymmetric fields used to determine 
impact on plasma rotation

• Follows past experiments
n = 3 field configuration used on NSTX for a few years for (non-
resonant) rotation control

• General results
n = 2 applied field configuration shows expected global, non-
resonant character of damping

• Damping not due to resonant n = 1 component (as conjectured for 
n = 3 configuration) since n = 1 component is small

Increased rotation damping observed with lithium evaporation

• Theoretical increase in non-resonant torque expected at increased 
Ti (lower ion collisionality)
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Measured d(IΩp)/dt profile vs. theoretical
NTV torque (n = 3 field) in NSTX - revised)
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Experimentally observed braking in quantitative agreement with 
NTV theory for n = 3 field configuration 

• Quantitative agreement in NSTX 
between neoclassical toroidal
viscosity (NTV) theory and non-
resonant damping by odd parity 
fields

Revised calculation including 
Shaing erratum maintains O(1) 
agreement

• Past factor used to invoke field 
shielding in core not used here

• Details of saturation of 1/νi
dependence important for ST-
CTF and ITER

Additional physics may increase 
torque at lower collisionality

• e.g. precession drift/bounce 
frequency resonances
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Clear braking observed due to n = 2 field

• n = 2 has broader braking profile than n = 3 field (field spectrum)

Rotation evolution during n = 2 braking

broader 
braking region

than n = 3
case
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n = 2 non-resonant braking evolution distinct from resonant
• Non-resonant:

broad, self-similar reduction of 
profile
Reaches steady-state (t = 0.626s)

128882

0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6

10

20

30

0

R(m)

ω
φ(

kH
z)

128882

t = 0.516s

t = 0.466s (Δt = 10 ms)

• Resonant: 
Clear momentum transfer across 
rational surface
evolution toward rigid rotor core
Local surface locking at low ωφ
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Steady-state profile
(from non-resonant 
braking)

t = 0.626s
(Δt = 10 ms)
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outward
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βN ~ 3.5
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Stronger non-resonant braking with Li evaporation

• Examine νi
dependence of NTV 
by injecting lithium

• Li produces higher Ti
in region of high 
rotation damping

• Expect stronger NTV 
torque at higher Ti
(~Ti

5/2)

At braking onset, 
Ti ratio2.5 = 
(0.45/0.34)2.5 ~ 2

Consistent with 
measured dωφ/dt

• Rotating MHD 
eliminated with Li 
evaporation

lithiumno lithium

n = 2 braking

130720
130722

no lithium lithium

R = 1.37m

I c
oi

l(
kA

)
ω
φ

(k
H

z)

0
10
20
30

0.0

-0.4

-0.8

4

2

0.4
0.3

0.1
0.2

0
5

-5

t (s)
0.4 0.5 0.6 0.7

T
i (

ke
V

)
Δ

B
pu

n=
1 (

G
)
Δ

B
n=

od
d(

G
)



NSTX Modeling of Plasma Effects of Applied RMPs (GA 8/25/08) - Sabbagh 22

Non-resonant n = 2 braking evolution altered by Li evaporation

• Stronger Vφ damping by NTV at higher Ti (τNTV ~ Ti
5/2)

• Vφ saturates in case with lithium at reduced applied δB

Before Li evaporation After Li evaporation After Li, reduced δB
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New non-axisymmetric field spectra in NSTX used to influence 
ELMs and plasma rotation

• ELMs affected, not fully mitigated

ELMs frequency “lowered” (duration increased - compound ELMs created) by 
AC and DC fields

n = 2 + 3 configuration showed reduction in ELM frequency at maximum 
permitted coil current

Lithium wall conditioning attempted for pumping

• ELMs fully mitigated with application of lithium alone, ELMs triggered by fields

• H-mode onset time altered by n = 2 DC field application

• Non-resonant Vφ braking observed with even parity fields

Significant braking at field levels used to produce Chirikov > 1

Global non-resonant braking supports NTV theory in 1/νi regime

Lithium wall conditioning increases Ti, non-resonant braking strength

• Edge plasma rotation may play key role in ELM stability physics

Li increases edge Vφ mitigation, field reduces Vφ ELM less stable
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Design proceeding for potential upgrade of non-axisymmetric
control capabilities

• Non-axisymmetric control coil 
(NCC) – at least four applications

ELM control
• Poloidal spectrum flexibility and 

greater n spectrum

• Initial analysis by Evans shows 
favorable conditions for ELM control

RWM stabilization 
• n > 1 control, address poloidal

deformation of mode

• higher βN – new design reaches βN
up to the ideal with-wall beta limit

Plasma rotation control
• increased Vφprofile control, possible

n > 1 propagation

Error field correction capability 
significantly enhanced

• Similarity to proposed ITER coil 
design (VAC02)

• In 5 Year Plan incremental budget Primary passive
plate option

Secondary passive plate option

Existing
coils

Proposed Internal 
Non-axisymmetric Control Coil 

(NCC)
(initial designs - 12 coils toroidally)
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