XP-902: The Ongoing Search For the n=3 EF Source in NSTX

College W\&M
Colorado Sch Mines
Columbia U
Comp-X
General Atomics
INEL
Johns Hopkins U
LANL
LLNL
Lodestar
MIT
Nova Photonics
New York U
OId Dominion U
ORNL
PPPL
PSI
Princeton U
Purdue U
SNL
Think Tank, Inc.
UC Davis
UC Irvine
UCLA
UCSD
U Colorado
U Maryland
U Rochester
U Washington
U Wisconsin

SPG, JEM, DAG, SAS

MHD Group Review

1: Background, Previous Analysis, Present Conclusions
2: Shot Plans

Culham Sci Ctr
U St. Andrews York U Chubu U Fukui U
Hiroshima U Hyogo U
Kyoto U
Kyushu U
Kyushu Tokai U
NIFS
Niigata U
U Tokyo
JAEA
Hebrew U
loffe Inst
RRC Kurchatov Inst TRINITI
KBSI
KAIST
POSTECH
ASIPP
ENEA, Frascati CEA, Cadarache

IPP, Jülich
IPP, Garching ASCR, Czech Rep

U Quebec

We All Remember That n=3 Correction Helps Performance

Case 1: XP 823, $I_{P}=1100 \mathrm{kA}, \mathrm{B}_{\mathrm{T}}=0.45 \mathrm{~T}$ (I)

Case 2: XP 701, $\mathrm{I}_{\mathrm{P}}=800 \mathrm{kA}, \mathrm{B}_{\mathrm{T}}=0.44 \mathrm{~T}$

Parab. Opt. All Data-132.958 A, Mean Data-132.705 A

Case 3: XP 823, $\mathrm{I}_{\mathrm{P}}=750 \mathrm{kA}, \mathrm{B}_{\mathrm{T}}=0.4 \mathrm{~T}$

This Data Is Insufficient For Accurately Locating the Maxima

Conclusion: PF5 is Mostly Likely Source, But Evidence is Not Conclusive

- Use total angular momentum as the figure of merit in determining optimal correction current
- Two "Good" scans are well correlated with PF-5 Current
- Lower current, 5 shot scan is hard to fit in the trend.
- Result is not strictly conclusive, so take some more data.

Part 1 Shot List: Continued Search For The EF Source

- Reference Shot:
- high-к, high- δ "fiducial" shape
- Should go into H-mode at t~110-115 ms, possibly with a "blip" of C.
- Match early density evolution to 125329 (900 kA), 128896 (1100kA), 128039 (750 kA).
- Method for Each I_{P}, B_{T} Combination
- Take a reference shot with no SPA currents.
- Begin scan over $n=3$ magnitude and polarity:
- $I_{\text {SPA } 1}=-250,250,-500,500,-750$, then other values based on data.
- Wider range required for larger I_{P}.
- Continue until the L vs. RWM curve is properly resolved (7-8 shots)
- Run analysis code between shots to ensure sufficient data.
- Repeat the above "method" under the following $\mathrm{I}_{\mathrm{P}}, \mathrm{B}_{\mathrm{T}}$ combinations
- Hope that first 2 conditions can fully implicate PF or TF, no need for more.

XP	Ip	BT	Ip/Bt	Priority
701	800	0.44	1818	Done
823	750	0.4	1875	Done, But Questionable
823	1100	0.44	2500	Done
902	900	0.36	2500	1
902	700	0.45	1556	2
902	850	0.55	1545	3
902	1000	0.54	1852	4

If Successful, Scans Should Resolve EF Source

- Assume that the PF5 coil is indeed the source of the error in determining the points below, and that the data is "perfect".
- Blue Points: Expected values from priority 1 \& 2 scans.
- Magenta Points: Expected values from priority 3 \& 4 scans.

Part 2: Improved Realtime Correction of $\mathrm{n}=3$

- "Optimal" correction in 2008 used fixed ~ 300 A of $n=3$ correction, regardless of plasma current.
- Create new "tmf" algorithm:
- imf="Initial Mode Feedback"
- smf="Second Mode Feedback"
- tmf="Third Mode Feedback"
- Simplest possible features for tmf:
- Same pre-programmed waveform capability:

$$
I_{\text {SPAX, Pre Prog }}
$$

- Coupling parameters from each PF/TF coil to each RMW coil:

$$
\sum_{c_{1}=\text { coliss }} G_{c_{i}, A_{A} X} I_{C i}
$$

- Same low-pass filtered $n=1$ FB requests, separate B_{R} \& B_{p} :

$$
I_{L P F, B P, S P A X}+I_{L P F, B R, S P A X}
$$

- Total request:

$$
I_{\text {tmf, SPAX }}=I_{\text {SPAX ,Pre Prog }}+\sum_{C i=\text { Coils }} G_{C i, S P A X} I_{C i}+I_{L P F, B P, S P A X}+I_{L P F, B R, S P A X} \quad \begin{aligned}
& G_{P F, S P A 1} \approx-15(A / k A) \\
& \\
& \\
& \\
& G_{P F 5, S P A 2} \approx-15(A / k A) \\
& \\
& G_{P F, S, S P A 3} \approx+15(A / k A)
\end{aligned}
$$

Part 2 Shot List: Testing of Optimized Correction

- Reference: Optimal I_{P}, B_{T} pair from previous scans.
- Looks now like $\left[l_{P}, B_{T}\right]=[1100 \mathrm{kA}, 0.45 \mathrm{~T}]$ is a good configuration.
- Choose the PF5/SPA gain coefficients as:

$$
\begin{aligned}
& G_{P F, S P A 1} \approx-15 \times f \quad(A / k A) \\
& G_{P F 5, S P A 2} \approx-15 \times f \quad(A / k A) \\
& G_{P F, S P A 3} \approx+15 \times f \quad(A / k A)
\end{aligned}
$$

- 8 (or less) shot scan of the Gain Multiplier "f", verifying that realtime correction works.

| SPA 1 Optimal
 Gain | SPA 2
 Optimal Gain | SPA 3
 Optimal Gain | Gain
 Multiplier | SPA 1 Gain |
| :---: | :---: | :---: | :---: | ---: | ---: | ---: | ---: | | SPA 2 |
| :---: |
| Gain | SPA 3 Gain | Shot Number |
| :--- |
| -15 |

If Step 2 is Implemented, Should More Modifications Be Made to the Feedback Code?

- There is overhead with doing any modifications to the FB code, even for "small changes".
- Remember how the algorithm is written and what it does.
- Get Dana to compile in PCS and debug it.
- Possible "improvements":
- Derivative and Integral Gain
- Separate Low- and High- pass versions of mode identification, with different gains (P, I?, D?).
- Allows higher gain for DEFC than for direct RWM FB.
- Other ideas?

