

Supported by

XP-902: The Ongoing Search For the n=3 EF Source in NSTX

College W&M **Colorado Sch Mines** Columbia U Comp-X **General Atomics** INEL **Johns Hopkins U** LANL LLNL Lodestar MIT **Nova Photonics** New York U **Old Dominion U** ORNL **PPPL** PSI **Princeton U** Purdue U SNL Think Tank, Inc. UC Davis **UC** Irvine UCLA UCSD **U** Colorado **U** Maryland **U** Rochester **U** Washington **U Wisconsin**

SPG, JEM, DAG, SAS

MHD Group Review

1: Background, Previous Analysis, Present Conclusions 2: Shot Plans

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U **NIFS** Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA. Frascati CEA, Cadarache **IPP**, Jülich **IPP**, Garching ASCR, Czech Rep **U** Quebec

We All Remember That n=3 Correction Helps Performance

Case 1: XP 823, I_P=1100 kA, B_T=0.45 T (I)

XP-902, MHD Group Review

Case 2: XP 701, I_P=800 kA, B_T=0.44 T

()) NSTX

XP-902, MHD Group Review

Case 3: XP 823, I_P=750 kA, B_T=0.4 T

NSTX

XP-902, MHD Group Review

Conclusion: PF5 is Mostly Likely Source, But Evidence is Not Conclusive

- Use total angular momentum as the figure of merit in determining optimal correction current
- Two "Good" scans are well correlated with PF-5 Current
 - Lower current, 5 shot scan is hard to fit in the trend.
- Result is not *strictly* conclusive, so take some more data.

Part 1 Shot List: Continued Search For The EF Source

- Reference Shot:
 - high- κ , high- δ "fiducial" shape
 - Should go into H-mode at t~110-115 ms, possibly with a "blip" of C.
 - Match early density evolution to 125329 (900kA), 128896 (1100kA), 128039 (750 kA).
- Method for Each I_P , B_T Combination
 - Take a reference shot with no SPA currents.
 - Begin scan over n=3 magnitude and polarity:
 - I_{SPA1} =-250,250,-500,500,-750, then other values based on data.
 - Wider range required for larger ${\rm I}_{\rm P.}$
 - Continue until the L vs. RWM curve is properly resolved (7-8 shots)
 - Run analysis code between shots to ensure sufficient data.
- Repeat the above "method" under the following I_P , B_T combinations
 - Hope that first 2 conditions can fully implicate PF or TF, no need for more.

XP	Ip	BT	Ip/Bt	Priority	
701	800	0.44	1818	Done	
823	750	0.4	1875	Done, But Questionable	
823	1100	0.44	2500	Done	
902	900	0.36	2500	1	
902	700	0.45	1556	2	
902	850	0.55	1545	3	
902	1000	0.54	1852	4	

If Successful, Scans Should Resolve EF Source

- Assume that the PF5 coil is indeed the source of the error in determining the points below, and that the data is "perfect".
- Blue Points: Expected values from priority 1 & 2 scans.
- Magenta Points: Expected values from priority 3 & 4 scans.

Part 2: Improved Realtime Correction of n=3

- "Optimal" correction in 2008 used fixed ~300 A of n=3 correction, regardless of plasma current.
- Create new "tmf" algorithm:
 - imf="Initial Mode Feedback"
 - smf="Second Mode Feedback"
 - tmf="Third Mode Feedback"
- Simplest possible features for tmf:
 - Same pre-programmed waveform capability:

I_{SPAX}, Pr e Pr og

- Coupling parameters from each PF/TF coil to each RMW coil:

$$\sum G_{Ci,SPAX}I_C$$

- Same low-pass filtered n=1 FB requests, separate $B_R \& B_P$:

$$I_{LPF,BP,SPAX} + I_{LPF,BR,SPAX}$$

- Total request:

$$I_{tmf,SPAX} = I_{SPAX,Pr\,e\,Pr\,og} + \sum_{Ci=Coils} G_{Ci,SPAX} I_{Ci} + I_{LPF,BP,SPAX} + I_{LPF,BR,SPAX}$$

 $G_{PF5,SPA1} \approx -15 \ (A/kA)$ $G_{PF5,SPA2} \approx -15 \ (A/kA)$ $G_{PF5,SPA3} \approx +15 \ (A/kA)$

Part 2 Shot List: Testing of Optimized Correction

- Reference: Optimal I_P , B_T pair from previous scans.
 - Looks now like $[I_P, B_T] = [1100 \text{ kA}, 0.45\text{ T}]$ is a good configuration.
- Choose the PF5/SPA gain coefficients as:

 $G_{PF5,SPA1} \approx -15 \times f \quad (A/kA)$ $G_{PF5,SPA2} \approx -15 \times f \quad (A/kA)$ $G_{PF5,SPA3} \approx +15 \times f \quad (A/kA)$

• 8 (or less) shot scan of the Gain Multiplier "f", verifying that realtime correction works.

SPA 1 Optimal	SPA 2	SPA 3	Gain		SPA 2		
Gain	Optimal Gain	Optimal Gain	Multiplier	SPA 1 Gain	Gain	SPA 3 Gain	Shot Number
-15	-15	15	-1	15	15	-15	
-15	-15	15	-0.5	7.5	7.5	-7.5	
-15	-15	15	0	0	0	0	
-15	-15	15	0.5	-7.5	-7.5	7.5	
-15	-15	15	1	-15	-15	15	
-15	-15	15	1.5	-22.5	-22.5	22.5	
-15	-15	15	2	-30	-30	30	
-15	-15	15	2.5	-37.5	-37.5	37.5	

If Step 2 is Implemented, Should More Modifications Be Made to the Feedback Code?

- There is overhead with doing any modifications to the FB code, even for "small changes".
 - Remember how the algorithm is written and what it does.
 - Get Dana to compile in PCS and debug it.
- Possible "improvements":
 - Derivative and Integral Gain
 - Separate Low- and High- pass versions of mode identification, with different gains (P, I?, D?).
 - Allows higher gain for DEFC than for direct RWM FB.
 - Other ideas?

