

Supported by

<u>XP-903</u>

College W&M **Colorado Sch Mines** Columbia U Comp-X General Atomics INEL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** New York U **Old Dominion U** ORNL PPPL PSI Princeton U Purdue U SNL Think Tank, Inc. **UC Davis** UC Irvine **UCLA** UCSD **U** Colorado **U** Maryland **U** Rochester **U** Washington **U Wisconsin**

Error Field Threshold Study in High-β_N Plasmas

J.-K. Park, J. E. Menard, and the NSTX research team

> MHD group review Jan. 22, 2009

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kvushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA. Frascati CEA, Cadarache **IPP**, Jülich **IPP**, Garching ASCR, Czech Rep **U** Quebec

Office of

Science

- Locking is a sudden opening of a magnetic island (at q=2?) when non-axisymmetric field is beyond a threshold
- Theory and experiment demonstrated linear correlation between critical resonant field and locking density
- IPEC gives more precise measure of (total) resonant field compared to (external) resonant field in vacuum
- 3 US tokamaks' data are mostly for low- β_N plasmas, but β_N is not so low in ITER inductive operations

→ Need to know error field threshold in high- β_N plasmas

Explicit goal is to find out a "locking" in NSTX high- β_N and to increase parameter space for scaling

- Demonstration of the linear correlation for stable high- β_{N} in NSTX plasmas

- Need ~8G total resonant field for density 6x10¹⁹m⁻³
- 8G is possible by RWM 6kA, without plasma response

Feasibility can be found by XP2008 shots (or experience) and by plasma amplifications

🔘 NSTX

4

Implicit goal is to understand the role of plasma response, in high β and in locking physics

- Fast swiping of RWM currents can make a locking in relatively low β_N ?
- How does the critical RWM vary as a function of β_N ? Sensitivity?

Run Plan (0.5 day)

- One (or two) target shot may be sufficient (#130217~221)
 - Need to have sufficient β_N changes during shots
 - Start with NBI<4MW, and varies power : 4 shots
- Fast swiping of RWM n=1 (#122660) at different times
 - Apply RWM n=1 ($0 \rightarrow 3kA$ in 40ms and stay) when β_N is as low as possible in flat top
 - If locked when RWM=3kA, start with that β_N at that time : 2 shots
 - − Apply RWM n=1 (0→3kA) to different $β_N$ at different times : 8 shots
- When time permitting, : 6 shots
 - 1) If insufficient β_N scan, increase NBI power and thus β_N
 - 2) If sufficient β_N scan, increase elongation (#124440) (better coupling to n=1 is expected if q95 is similar) and repeat RWM n=1 (0 \rightarrow 3kA) at different times

