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Ultimate Goal: Control NB Modulation in Order to Maintain β
Just Below the “Real” Stability Limit

• RFA is the amplification of applied error fields by the plasma.
– RFA is believed to increase rapidly near and above the no-wall βN limit.

• By monitoring RFA in realtime, it may be possible to detect proximity
to this stability limit.
– May be better than rtEFIT+real-time stability codes (rtDCON?)

• Using RFA to adjust the input power may be a component of non-
disruptive operation near or beyond the no-wall βN limit.1
– Particularly attractive for a beam-driven device like CTF.

Target RFA Adjust PNBI:
ΔPNBI=Kpe(t)

Stored Energy of Plasma is
Changed
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RFA Responds as a function of βΝ
RFA= α1βN+α0  (?)
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1: H. Reimerdes, et al., NF 2005
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Outline

• Ultimate goal.
• Analysis of some 2007 data, XP-704

– High-β, high-κ, high-δ, rapidly rotating targets similar to those we
might want to use for RFA control.

– RFA measurements in two ways:
• Use of a single, highly filtered but minimally compensated anti-series pair

of BR sensors (scheme from J.K. Park).
• Highly filtered, highly compensated n=1 mode decompositions.

– Some results for RFA vs βN,

• PCS Implementation.
• Proposed scoping XP to resolve issues raised above.

Pay Special Attention to :
Recursive Filters Used to Process Data

Computational Techniques Available in Realtime
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High-Performance Shots Possible with 1kA Pk.-Pk. 30 Hz
Traveling Waves

Time for rotation measurement
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Larger Applied Fields Lead to Rotation Damping

CHERS Channel #18 rotation frequency, t=0.6 sec

Severe rotation damping, and eventual disruption, for IRWM>~1.4 kA
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Example “Single Sensor” RFA Measurements: XP-704

• Shot 124801: a “typical best shot”
– 1.2 kA pk. to pk., 30 Hz, counter-rotating n=1

traveling wave (TW) perturbation.
– 6MW input power, with βN slowly evolving

during TW application
• RFA Definition:

– BR Dif is the difference field for a single coil pair,
including all RWM coil pickup.

• Equivalent to the ‘\Cal_’ signals in the tree.
• May be good for realtime calculations,

since the compensations are minimal.
– BR,Diff,Peak-to-Peak determined from tracking zero-

crossings.
• Two amplitudes calculated for each cycle.
• Relatively easy to code for realtime.

• Recursive filters used to isolate the correct
frequency.

• Clear tracking of RFA with βN during period of TW.

! 

RFA =
BR ,Diff ,Peak" to"Peak

IRWM ,Peak" to"Peak

BR,Diff

SPA-1

βN

RFA
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Look At All Co-Going Measurements For XP-704, Single
Sensor RFA Definition

• Consider all shots with +30 Hz waves in XP-704
• All three source shots except 124811, which had 2 sources, and lower β.
• Scaling of RFA with βN remains, though the scatter is large.

– Can you actually do control based on these signals?
– Including information from all sensors could improve the performance of the

system.
• Look at other definitions.
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What about looking at the Full Plasma n=1 Response?
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• Plasma response should be an n=1 perturbation,
phase shifted with respect to the applied field.

• However, no rotating perturbation is seen in the
archived n=1 decompositions.
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Extra Processing of the Sensor Data Resolves A
Clear Rotating n=1 Perturbation

• Processing steps to observe
rotating RFA:
– Utilize fully compensated sensor

data.
– Compute mode amplitude and

phase allowing n=1 (or 1+2) only.
– Compute quadrature components

of mode.

– Apply high-order band-pass filter
to quadrature components.

– Recompute mode amplitude and
phases.

• Clear rotating plasma response is
observed.

• Plasma response scales with βN.

RFA

βN

Plasma Response Phase

Applied Field Phase



NSTXNSTX A Scoping Study For RFA Control in NSTX 10

RFA from n=1 Decomposition Shows Scaling with βN

• BP(upper) sensors show best correlation with βN.
• Less noise than single sensor measurement, and more consistency that BR data
• These are the best RFA measurements SPG has yet found.

• Bp sensors may be less sensitive to plasma geometry than BR (for fixed outer-gap)
• Distance to BR sensors is a stronger function or outer squareness and trianguarity.

Big Caveat
This Analysis Based on Fully Compensated Sensor Data, Including AC Compensation

of EFC Coil Pickup
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AC Compensations are Necessary

Counter-going TWs detected using
full AC compensation

Clear RFA trend!

Counter-going TWs detected using
only static compensation.

It is a mess.

Next Two Slides:
Details of the off time-domain AC compensation method…will skip

unless people really want to hear it.
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NSTX Uses Time-Domain AC Compensations
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Offline:
• For each sensor (i) and RWM coil (j),

there are 5 time constants t, and 5
associated coefficients coefficients,

• Total of 8×6×6×5×2=2880 (!) numbers
Online Now:

• Include only k=0 term (static pickup)
• 8×6×6=288 numbers

Example Compensations: Vacuum shot with a single RWM
Coil Energized

Red: Fully Compensated
Blue: Full Pickup

Brown: Direct Pickup Only Subtracted (k=0 only, as in PCS)

For RFA measurement, may only need to compensate in the
vicinity of the applied frequency.
Can only static pickup and a single time-constant be useful
for RFA feedback?

However, the overall feedback system
might be improved with better AC
compensation.

(Compensated Signal)i= (Uncompensated Signal)i-Ci
Typical BR Sensor

Typical BP Sensor
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Two τ’s (>0) May Be Sufficient For Compensation, while
Three will Certainly Work

Blue: No Compensation
Brown: Static Compensation Only
Magenta: 2 term compensation, τ=0,3 (msec)
Black: 2 term compensation, τ=0,30 (msec)
Dark Blue: 3 term compensation, τ=0,4,16 (msec)
Green: 4 term compensation, τ=0,3,9,18 (msec)
Red: 5 term compensation, τ=0,2,4,8,16 (msec)

Blue: No Compensation
Brown: Static Compensation Only
Magenta: 2 term compensation, τ=0,3 (msec)
Black: 2 term compensation, τ=0,30 (msec)
Dark Blue: 3 term compensation, τ=0,24,96 (msec)
Green: 4 term compensation, τ=0,15,30,60 (msec)
Red: 5 term compensation, t=0,12,24,48,96 (msec)

Typical BR SensorTypical BP Sensor
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Which Technique for RFA Detection is Best?

• Single Sensor Method
– No additional compensations required.
– Need zero-crossing/peak-finding algorithm.
– The calibrated but uncompensated data is NOT presently available in mode-

ID, so still need to bring in additional data from (I think) ACQ.
– Time resolution is limited to essentially ~1/fTW, based on zero-crossing/peak-

peak analysis.
– Requires one band-pass filter (the chosen difference signals).

• n=1 Decomposition Method
– Uses (averages) all sensors to constrain the RFA response.
– Provides instantaneous values for the RFA.
– Requires AC compensations be applied to sensors.

• These compensations can then be used for improved fast RWM feedback, as well
as RFA control.

– Requires 2 band-pass filters (the quadrature components).
• SPG Recommendation (pending discussion of frequency-domain method of HR):

– Implement AC compensations, with either 2 or 3 non-zero time constants,
and use the filtered n=1 quadrature components for RFA measurements.

Editorial Color Code
Green is “good”

Red is “bad”



NSTXNSTX A Scoping Study For RFA Control in NSTX 15

Late Breaking…

• Holger Reimerdes will present (next) a fast frequency domain method of
isolating the RFA signal from an n=1 traveling wave.

• Implements the AC compensation at only the frequency of interest.
– Fewer calculations, and possibly better signal to noise.

• Haven’t yet tested it on NSTX data
– data from 2005 should allow an initial comparison to time-domain methods

• All methods discussed in this presentation use time-domain analysis.
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Modifications and/or New Algorithms Required in Mode-ID,
RWM, and NBI Categories

Discuss each of these algorithms on the following slides

RWM Category
Controls The SPAs

Mode-ID Category
Processes RWM

Sensor Data

NBI Category
Control NBI Pre-Programming

and Modulation

(old & new) bnf algorithm
• Accept RFA measurements

from mar algorithm.
• Adjust NB modulation to

achieve desired RFA level.

(new) mar algorithm
• Compute AC compensated sensor data

• Calculate n=1 amplitude and phase for RWM
feedback, as in present algorithm.

• Calculate band-pass filtered n=1 plasma
response.

• Use requested ISPA,TW and frequency to
generate an RFA measurement.

(new) tmf algorithm
• Generate an n=1 traveling wave: ISPAX,TW
• Allow a preprogrammed SPA request: ISPAX,Pre-Prog
• Notch filter the quadrature components of the n=1

mode (BP and BR), to remove the pickup from the
traveling wave.

• Generate n=1 FB requests: ISPAX,FB
• Error field correction directly proportional to the PF

coil currents: ISPAX,EFC
• Sum requests to generate SPA currents.

ISPAX= ISPAX,TW+ ISPAX,Pre-Prog+ ISPAX,FB+ISPAX,EFC
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New “mar” Algorithm Will Produce Both BP and BR n=1
 Mode Identification, and RFA Data As Well

• Add AC compensations.
– Put AC compensation coefficients in model tree, read them into shared memory.
– Add code to compute and subtract compensation terms

• For RMW control, retain features of “mid” algorithm.
– Generate same amplitude and phase of n=1 modes for RWMF/DEFC, based on the

decomposition matrix Ymode-ID
– Separate BP, BR, and “combined” n=1 mode amplitude and phases.
– Send these numbers to “tmf” algorithm, or the older “imf” and “smf”” algorithm.
– Same baseline rezeroing:

• However, allow separate times for BP and BR sensors.
• RFA calculations

– Use a different decomposition matrix, YRFA, to generate quadrature components of
plasma response, and then bandpass filter the components.

• Center frequency and BW of recursive filter are algorithm waveforms.
– Calculate the amplitude of the plasma response (C2+S2)1/2

.
– Normalize to SPA currents, to get RFA measurement in units of Gauss/kA.

• SPA TW frequency and amplitude are waveforms in the “tmf” algorithm, and can be accessed
here.

– Send the RFA value to the “bnf” algorithm.
– This section is the part that changes under Holger’s frequency-domain method.
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Simple Recursive Bandpass Filter Will Be Used to Isolate
Plasma Response at fTW

! 

yout n[ ] = a
0
yin n[ ] + a

1
yin n "1[ ] + a

2
yin n " 2[ ]

+b
1
yout n "1[ ] + b

2
yout n " 2[ ]

a
0

=1"K, a
1

= "2 K " R( )cos 2#f( )

a
2

= R2 "K

b
1

= 2Rcos 2#f( ) b
2

= "R2

K =
1" 2Rcos 2#f( ) + R2

2 " 2cos 2#f( )

R =1" 3$ BW

BW=1
BW=2
BW=4
BW=8
BW=16

Narrow passbands are possible, but maybe not desirable



NSTXNSTX A Scoping Study For RFA Control in NSTX 19

New “tmf” Algorithm Designed to Allow RWMF in the
Presence of the n=1 Spectroscopy Perturbation

• Feature #1: Generate n=1 traveling waves.
– Input wave amplitude, phase, frequency as waveforms.

• Feature #2: Include pre-programmed requests.
• Feature #3: Include correction proportional to PF5, PF4, PF3U, PF3L, TF, OH

• Feature #4: RWMF/DEFC, notch-filtered to remove applied TW (example equations for BP
sensors):
– The “mar” algorithm provides the n=1 amplitude and phase, or alternatively the

quadrature components:

– Calculate notch-filtered (NF) version of the quadrature components.

– Reconstruct amplitude and phase of notch filtered data

– Form feedback requests

• Final SPA request is sum of all the above:
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Need a Recursive Notch Filter In Order to do RWMF/DEFC

• Very narrow stop-band
achievable with simple
recursive filter.

• Minimal phase shift in the
pass-band.

•  BW and f are bandwidth and
center frequency, normalized
to sample frequency
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Existing “bnf” Algorithm Can Likely be Utilized
for the RFA Feedback

• NBI Category:
– Existing “bnf” (= beta-normal feedback) algorithm already allows a wide

variety of feedback targets:
• WMHD, βN, βT, for instance.
• Waveforms exist for βP control (P, I, D, deadband, LPF), but no internal

code:
– Simple to redefine those waveforms for RFA control, forget about βP control.

• Alternatively, add new waveforms for RFA-control
– Need to think about the impact on reloading.

– Advantage is that we use the same (presumably optimized) methods
for setting NBI modulation times, batting order, preprogramming.

– Take credit for all the EPICS/PCS communication work presently being
done.
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Plan is Designed For RFA Control, But Has Incremental
Improvements For RWMF/DEFC Studies

• Mode-ID Improvements
– Apply AC Compensations To Sensor Data

• Accurate mode reconstruction during fast feedback.
• Doesn’t happen with HR’s frequency-domain method and single frequency AC

compensation method.
• There are interesting combinations of the time & frequency domain methods.

– Allow BR and BP sensors to be re-zero’d at different times
• Elimination of OH-TF pickup in the BR sensors?

• RWM Coil Control Improvements
– Introduce a notch filter, which can be used for any purpose

• Elimination of 100 Hz noise?
– Allow RWM coils to be directly tied to PF and TF coils.

• Dynamic correction of the n=3 EF?
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Issue To Be Addressed By An XP:
How well does RFA Predict the Approach to Stability Limits?

Ideal stability limits depend on:
• Triangularity & Squareness

• q0, q95
• Pressure Peaking and li

Thesis: RFA measurement should be inherently sensitive to these dependencies
Proposal: Test these in an XP

Ferron et al, Phys. Plasmas 12 056126
n=1 RFA Used to Study Stability Dependence on qmin 

Menard et al, Phys. Plasmas 11 639
Dependence of Stability on Triangularity
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Strawman Shot Plan (which parts are most important?) (1)

Step 0: Establish 900 kA “fiducial” shape discharge with good βN evolution  (3 shots)
• κ~2.3-2.4, δ~0.6, drsep=-1cm, outer gap~10cm, Lithium conditioned
• Use n=3 correction to maintain optimal rotation.
• Start with 2 sources (3 or 4 MW?), add 3rd at ~500 msec (5 or 6MW) and

remove at 800 msec, for βN ramp-up and ramp down.
• Call this the reference configuration.

– May need a second reference to get larger range of βN evolution (?)
• Keep this βN for all subsequent cases.
Step #1: Apply 30 Hz Co- Traveling Wave, 1kA pk-pk.                                (3 shots)
• 1kA and 30 Hz determined from previous XPs
Step #2: Frequency Scan                                                                              (6 shots)
• Repeat at -30,10, 45, 60 Hz
• Do we need vacuum shots?
• May be able to extract this data from XP-501? Should at least provide guidance.
• Use to assess:

– Plasma perturbations with optical USXR as a function of frequency.
– Low-frequency RFA measurement for comparison with IPEC.
– Optimal frequency for RFA control Shots: 18
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Strawman Shot Plan (which parts are most important?) (2)

Step #3: Scan IP to 700 kA, 1100kA                                               (6 shots)
• Test robustness of these plasmas to 1kA traveling waves
• Test of RFA vs βN at different q95, li.
Step #4: Modify pre-heating in 900 kA case                                   (4 shots)
• Later pre-heating should allow a higher-li plasma, and change in stability limits.
• Delay the 2nd  and/or third sources.
Step #5: At 900kA, scan triangularity at fixed elongation.              (8 shots)
• Keep the outer-gap fixed.
• RFA should be inversely proportional to triangularity at fixed βN (?)
Step #6: For reference shape, scan the outer gap.                        (3 shots)
• Increase to 15 cm, drop to 7 cm.
• Test geometry effects on RFA measurement.

– Important for assessing the technique as a control tool: What is the tolerance
for controlling the outer gap? -> d(RFA)/d(gapout)?

Step #7: Repeat (some steps) with n=3 correction removed            (3 shots)

Shots: 18+24=42
Addendum: If/when PF4 is available, use RFA to understand

the stability as a function of squareness.
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Diagnostics and Analysis

• Diagnostics
– All profiles (Ti, Te, Pitch Angle, Rotation, ne,…)
– RWM sensors (critical)
– Optical SXR array

• Look SXR perturbation due to the stable RWM.

• Analysis
– Equilibrium reconstruction with all constraints
– DCON, for calculation of ideal stability limits.
– IPEC (?)
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Most Aggressive Schedule Would Allow This to be
Tried in 2010

• NBI Side
– We have (essentially) never controlled beams from PCS.
– Must develop/test PCS-EPICS communications links this year.
– Rely on the NB modulation algorithm being tested (successfully) this year.
– This is the biggest uncertainty in the schedule.

• “mar” and “tmf” algorithms
– No new hardware to control, just new PCS code (and a little new ACQ code).
– 1-1.5 months to write the algorithm code, assuming 50-75% of SPG’s time.

• Need to code-up Holger’s frequency domain method and compare to time-domain
analysis.

– May modify the “mar” algorithm specification.
• Need to test some algorithm code in idl.
• Need to write the PCS code.
• Some Dana time to get AC-compensation coefficients from tree to algorithm.

– Then Dana needs to compile all into PCS, check for memory conflicts…
– 2-3 weeks for piggyback testing.

• Background testing this run when the SPAs are not in use.
• First combined test of RFA detection+NB control: mid-2010 Run
• Real schedule may be slower, is certainly not faster.



NSTXNSTX A Scoping Study For RFA Control in NSTX 28

Old and Discarded Stuff Follows
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Three Reference Shots Taken For XP-704

All fiducial shape.
One reference with 6MW input, two with 4MW.
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New “rid” Algorithm Will Produce Both BP and BR n=1
 Mode Identification, and RFA Data As Well

• Retain features of “mid” algorithm.
– Generate same amplitude and phase of n=1 modes

• The data for this calculation uses all static coil compensations.
– Separate BP and BR mode amplitude and phases.
– Send these numbers to “tmf” algorithm, or the old “smf”” algorithm.

• Add calculation of zero-crossings for RFA measurement.
– Pick a known good sensor pair (BR, upper-difference #1)
– Use “calibrated”, but not “compensated” versions of signals.

• Avoids need to apply AC compensations in realtime
– Apply high-order causal bandpass filter

• Essentially same code as in simulation
– Check for zero crossings, identify TW amplitude.

• Essentially same code as in simulation
– Normalize to SPA currents, to get RFA measurement

• SPA TW frequency and amplitude are waveforms in the “tmf” algorithm, and can
be accessed here.

– Send the RFA value to the “bnf” algorithm.
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New “tmf” Algorithm Designed to Allow n=1 FB in the
Presence of the n=1 Spectroscopy Perturbation

• Feature #1: Generate n=1 traveling waves.
– Input wave amplitude, phase, and start time as waveforms:

• Feature #2: Generate pre-programmed requests.
• Feature #3: Fast feedback and DEFC, notch-filtered to remove applied TW

(example for BP sensors):
– The “rid” algorithm provides the n=1 amplitude and phase, or alternatively the

quadrature components:

– Calculate lowpass and highpass version of the quadrature components, using high-
order filters (phase effects?).

– Reconstruct amplitude and phase, for HP and LP filtered data

– Form feedback requests, with different gains and phases for HP and LP values

• Final SPA request is sum of all the above:
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High-Order Causal Filter Realtime Implementation

HP and LP Filters
First use Nth order lowpass filter:
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Then use Nth order lowpass filter:

• For each signal undergoing an nth-order filter,
need to keep an Nx2 array of previous values.

• Each filter requires a simple length-N FOR loop.
• Easy to implement.

N=1
N=2
N=3
N=4

N=1
N=2
N=3
N=4

N=1
N=2
N=3
N=4
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Simulation of “Single Sensor” RFA Feedback
Uses Simple Physics Model

• Plasma Heating Model
– Use 0-D model of plasma

– Neglect beam slowing down…power is instantly deposited
• RFA Model & Detection

– Simple linear relationship between RFA and βN: M= aRFAβN+bRFA
• aRFA & bRFA determined from previous measurements.

– Detected wave is M×IRWMcos(wt)
– Add noise to the detected wave..
– Apply a high-order causal filter to extract the eliminate noise
– Detect the RFA from analysis of the traveling wave data.

• Use zero-crossing identification to bracket maxima and minima.
• Feedback Scheme

– Proportional gain on RFA error modifies the injected power request
• Neutral Beam

– Injected power request leads to a duty cycle request for each source.
– Use the same modulation methods as in the (untested) βN control algorithm.
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Simulation With No Noise Indicates RFA Control is Possible

Red: RFA Request
Blue: Achieved RFA
Error: Red - Blue

• Proportional gain only, not
optimized.

• No noise on detected wave
• Confinement time (40 msec)

insufficient to reach requested
RFA

• 3rd order causal HP and LP
filters, passing 20 < f < 50 Hz.
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Simulation With Considerable Noise Shows Success of
High-Order Causal Filters

Red: SPA Waveform (kA)
Blue: Detected Difference

Signal
Magenta: Difference Signal

After Filtering


