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Fourier analysis of perturbation measurements yields

plasma response at applied frequency

e Fourier analysis in time-domain * Frequency-dependent vacuum
— Signal of magnetic probe s coupling is well documented
it
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Fourier analysis and toroidal mode decomposition

yields n=1 plasma response at applied frequency

* Fourier analysis of sensor signals » Toroidal mode analysis of Fourier
coefficients
I
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Calculation of n=1 plasma response from discretely

sampled magnetic probe signals

Discrete time steps: f,=kA
Probe plasma with currents in coils c: I(t) = lccos{wgy T T o)
Measure magnetic field with probes s: B(t,)

Calculate Fourier series for each probe s and time f, over L preceding
periods of appliﬁd field corresponding to N = L 27&/ (w.,A) previous samples:

a5k = > Bs(l) cos(weyt) and bk = X Bs(t) Sin(0eyitic)

k'=K-N v k'=K-N
Subtract k / <
ublract known aP% =gy I Y, (k2 cos(6c,0) - L sin(oe:o)
vacuum coupling at o_,, =g
USing b = gV 4 iblEC : bPE = by~ S, (k2 sin0,0) + bIZ° cOS (00
c'=c
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Extract n=1 plasma response: Ag'ﬁs =0.5) (c;,ag',?f ~ c‘s/bé’f',is)
s'=s
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Real-time algorithm is equivalent to offline analysis

on DIII-D

Plasma response (fgxt=-40Hz)
DIII-D - MPID n=1 plasma response

Real-time algorithm averaging over 4 periods
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* Discrepancy possibly due to
difference between I-coil current
target (real-time algorithm) and
actual current (offline analysis)
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Calculation of toroidal mode component increases

signal-to-noise ratio

* General least square fit of toroidal mode components
— Solution by normal equations yields coefficients C.

Bn(t) = ECQ Bs(t) with Bs( ) gﬁ(Bn( ) /nCPs)
S
« Generalize to obtain toroidal |—2"‘0 Deg I Cr" Phas':gﬁ
mode component at w = w 90 Phase bsc
P ext /—:\\ : //
—_ | | .
Bg" =0.5 Y C¢ By §‘: ‘_F"If1 ~ : Upper I-coil
ey \—/I'/l
. S. < ! Midplane
» Coupling of coils to sensors £ ok e B, sensors
fora mode numbernata S S T~
frequency o & H-R /I/ ! Lower I-coil
Bn w -90 \_/ :
bgp’ = Ins,m 0 %0 180 270 360
C Tor. angle ¢ (Deg.)

49th DPP Meeting, November 12-16, 2007



Plasma response increases at the (n=1) ideal MHD

no-wall beta limit

No or very weak plasma response
at low g, (£1.5)

Significant amplification above a
B-threshold

Threshold is close to or coincides
with the ideal MHD no-wall g-limit
— Limit set by n=1 kink mode
— Typically (in this type of
plasma)scales as By . ~2.4 ¢

In the wall stabilized regime the
RFA continuously increases with §
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Frequency response well described by a single weakly

damped mode

I
Plasma response by (n=1,m=wmext)

» Frequency response of stable high § plasma p—r————
is well described by a single mode model f
aB . 3
Tw Tl‘s =Ty YoBs = My [, %
with vo=vgywm gy Ea /

Fit yields

— Fit of measured spectrum yields . 3
vo=-(141+i108)s-1

Damping rate “YRWM o e
Mode rotation frequency ORWM 150 [~
Effective mutual inductance M, 100k \\
— RFA spectrum has also been observed in §
NSTX [Sontag et al, NF (2007)] and JET @ >0
[Gryaznevich et al, EPS (2007)] £ of
2 [
« Consistent with MARS-F calculations showing 50T Direction of
. ofe . L plasma rotation
that a rotationally stabilized plasma is well 100f . ———
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described by a single pole [Liu et al, PoP (2006)] o
Frequency of applied field wey/(27) (Hz)
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