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Motivated by observations of RWM triggers

e Motivation gy
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distribution could be related to RWM destabilization.

e Goals

— Verify the theoretical understanding of how fast particles
influence RWM passive stabilization physics.

Supports NSTX Research Milestone R(09-1): Understand

the physics of RWM stabilization and control as a function
of rotation.
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Hot ions have a strongly stabilizing effect for DIII-D

100

1.0 _ 1.0
1875 ms WIthOUt Wlth hOt i0n51875 ms
2200 ms 2200 ms 2200 ms
0.5 — 0.5 —
50 g 2600 ms , 2600 ms
i 0.0 // 0.0 /
0- | 1875Ms 200 ms
T B 05— o LIiiieaens 0.5 -
i ‘ wg=0 | | TTTTTTTE e
' og=0
=1 o [krad/s] YRwWM Tw YrRwm Tw
-50 1 I 1 I 1 I 1 I 1 '1 0 1 | | 1 I 1 1 1 1 l 1 '1 0 1 | | ] I 1 1 1 1 | 1
00 02 04 06 08 1.0 2.0 25 3.0 2.0 25 3.0
Py By B

— Using the equilibrium from DIII-D shot 125701 @ 2500ms and rotation from
1875-2600ms, MISK predicts a band of instability at moderate rotation without
hot ions, but complete stability with hot ions.

— This could help to explain why DIII-D is inherently more stable to the RWM
than NSTX, and possibly why energetic particle modes can “trigger” the RWM.
(Matsunaga et al., IAEA, 2008)
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DIII-D is running a similar experiment
(half day) on May 227, 2009

Test effect of hot ions on RWM stability by reducing

the (irapped) hot ion fraction (#289)

Description

» Reduce fraction of frapped hot ions with respect to reference (125701:
(B,/B=35% at n_=3.7x10""/m3~0.4n;, | ,=1.1MA)

« Evaluate changes in RWM stability by observing unstable mode or
changes in the damping rate using active MHD spectroscopy

Experimental approach

» Hot ion fraction depends on slowing down and energy confinement time
Whot _ T

Wi TEth

- Decrease slowing down time by increasing the density: t, =« n_’!

— No cryo pumyps, gas puffing, pellets

— Increase plasma current (allows for higher n_ and increases t_, )
* Aim for high C; at finite rotation to test RWM rather than NTM limit

pII-D

L

H. Reimerdes, RWM Physics Working Group Meeting, March 20, 2007
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Initial calculations for NSTX showed a direct effect
of hot ions on stability

< 003 T T T
.. i -0.6 121083 O |
. I ®0 1
~. total pressure i e 0.1 | |
S P -0.4 © 02| |
\\\

20 p=———==

-
[6,]
|

Pressure [kPa]
=
I

100 110 120 130 140 150
Radius [cm]

0.00 0.01 0.02 0.03 0.04
Re(5Wy)

— Using a test profile for hot ion pressure (and density), we find a
direct effect on the calculated growth rate.

— Because the hot ions are severely depleted near the edge in NSTX,
the effect may be less than in DIII-D.
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TRANSP analysis shows that a large range of fast
lon density Is possible
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TRANSP hot ion density (and pressure) do correlate with plasma current and magnetic field. Is this
difference enough to see in the stability calculation?
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Including fast ions in MISK calculation leads to
greater stability
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Including fast ions in MISK calculation leads to
greater stability
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Shot Plan

Task Number of Shots

1) Establish target
A) Start lithium deposition
B) Use 33000 (something from this vear) as setup shot (relatively high
elongation ~ 2.3 to avoid rotating modes, L, =0.9 MA B, =045T), start
n=3 correcting field at 0.250 s, ramping to full amplitude at 0.300 s. 3

2) Nary the n=3 DC field timing and magnitude
A} Correct n=1 error field using feedback system, B, sensor filter time = 100 ms. 3

B) Dunng the penod devoid of n=1 rotating mode actrvity, vary the n=3 DC field
from correcting phase to braking phase, and vary the SPA current ramp rate and
timing to optimally change plasma rotation, to find the marginal point. G

3) Vary the plasma current and toroidal field to change the fast particle density
Repeat the above procedure for the next two conditions, still with lithium.

Condition Ip (MA) Bt (T} Shots
1 0.9 0.43 {alreadv done above)
2 07 035 9
3 11 0.55 0

If the conditions can be completed quickly, we could add two more: I, =038 MA B, =040T,
and I, = 1.0 MA, B, = 0.50T. or we could move on to step four.

4 Passivate and repeat the above without lithium.
This will effectrvely change the density (and density profile), thus changmg the fast 1on
density profile as well. Could be another half day. (27)

Total: 30+(27)

@ NSTX
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XP932: RWM Stabilization Physics - Diagnhostics

e Required diagnostics / capabilities
— Ability to operate RWM coils in n = 3 configuration
— RWM sensors
— CHERS toroidal rotation measurement
— Thomson scattering
— USXR
— MSE

— Toroidal Mirnov array / between-shots spectrogram with toroidal mode
number analysis

— Diamagnetic loop
e Desired diagnostics

— FIReTip

— Fast camera
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Difference between hot and thermal ion calculations

Let us examine the difference between the trapped ion and hot ion contributions:
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magnitudes, Large €, near the edge amplifies any hot ion energy integral
but different W contribution. For this not to happen, hot ion density near the
distribution. edge would have to be very low.
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Inputs to the hot ion contribution

. : . : Ne 1
Given p, and n_, find €,, by iterating these three eqgns.: g, = Palle 21
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* note that the rise at the edge is due to n, going to zero faster than p,. This didn’t affect the
results in this case (see W > 0.9 on plot on next page), but it is something to pay attention to.
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Density and Pressure
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RWM Stabilization Physics — influence of fast

particles
e Approach
— Use TRANSP beforehand to identify a range of fast ion profile
shots.

— Establish RWM target shots.

— Use plasma current and density as control knobs for changing
the fast ion density and pressure profiles.

* |,from 0.6 - 1.2 MA.
e Scan toroidal field at constant q to change density.

— Use TRANSP analysis between shots?
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