

Supported by

Anisotropy in MISK – part 2

College W&M **Colorado Sch Mines** Columbia U CompX **General Atomics** INL Johns Hopkins U LANL LLNL Lodestar MIT Nova Photonics New York U **Old Dominion U** ORNL PPPL PSI **Princeton U** Purdue U SNL Think Tank, Inc. **UC Davis UC** Irvine **UCLA** UCSD **U** Colorado **U Illinois U** Maryland **U** Rochester **U** Washington **U** Wisconsin

J. Berkery

Department of Applied Physics, Columbia University, New York, NY, USA

Princeton, NJ December 20, 2010

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U **NIFS** Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA, Frascati **CEA.** Cadarache **IPP, Jülich IPP, Garching** ASCR, Czech Rep **U** Quebec

Reminder of MISK formulae, previous status, and what's new

$$\delta W_H = \sum_j \sum_{l=-\infty}^{\infty} 2\sqrt{2}\pi^2 \int \int \int \left[|\langle HT_j \rangle|^2 \frac{(\omega - n\omega_E) \frac{\partial f_j}{\partial \varepsilon} - \frac{n}{Z_j e} \frac{\partial f_j}{\partial \Psi}}{n \langle \omega_D^j \rangle + l\omega_b^j - i\nu_{\text{eff}}^j + n\omega_E - \omega} \right] \frac{\hat{\tau}}{m_j^{\frac{3}{2}} B} |\chi| \varepsilon^{\frac{1}{2}} d\varepsilon d\chi d\Psi,$$

$$\delta W_{\tilde{B}_{\parallel}} = \sum_{j} 2\sqrt{2}\pi^{2} \int \int \int \left[\langle HT_{j} \rangle^{*} \frac{\tilde{\mathbf{B}}_{\parallel}}{B} \frac{\chi^{2} - 1}{2|\chi|} \frac{\partial f_{j}}{\partial \chi} \right] \frac{\hat{\tau}}{m_{j}^{\frac{3}{2}} B} |\chi| \varepsilon^{\frac{1}{2}} d\varepsilon d\chi d\Psi,$$

- Simple Gaussian for EPs
 - $\partial f/\partial \chi$ expression was wrong in $\delta W_{B_{\parallel}}!$ Now fixed.
 - Circulating EPs are now included in $\delta W_{B_{\parallel}}$
 - Only Re(δW_{B_I}) used
 - Many more cases were run

A general expression for an anisotropic beam ion distribution function has been worked out*

$$f_{j}^{b}(\varepsilon, \Psi, \chi) = \sum_{s} \sum_{k} \sum_{p} f_{s,k,p}(\varepsilon, \Psi, \chi) \qquad \begin{array}{l} \text{s = \# of sources (NSTX: 3), k = \# of energy components (3),} \\ \text{p = \# of deposition surfaces (2)} \end{array}$$

$$= \sum_{s} \sum_{k} \sum_{p} n_{s,k,p}(\Psi) A_{s,k,p}(\Psi) \left(\frac{m_{j}}{\varepsilon_{s,k}}\right)^{\frac{3}{2}} \frac{1}{\hat{\varepsilon}_{s,k}^{\frac{3}{2}} + \hat{\varepsilon}_{c}^{\frac{3}{2}}(\Psi)} \frac{1}{\delta\chi_{s,k,p}(\hat{\varepsilon}_{s,k},\Psi)}$$

$$\times \left[e^{-(\chi - \chi_{0-s,p}(\Psi))^{2}/\delta\chi_{s,k,p}^{2}(\hat{\varepsilon}_{s,k},\Psi)} + e^{-(\chi + 2 + \chi_{0-s,p}(\Psi))^{2}/\delta\chi_{s,k,p}^{2}(\hat{\varepsilon}_{s,k},\Psi)} + e^{-(\chi - 2 + \chi_{0-s,p}(\Psi))^{2}/\delta\chi_{s,k,p}^{2}(\hat{\varepsilon}_{s,k},\Psi)} \right],$$

$$0 \le \hat{\varepsilon}_{s,k} \le 1, -1 \le \chi \le 1.$$

$$(243)$$

$$f_j^b(\varepsilon,\Psi,\chi) = n_j A_b \left(\frac{m_j}{\varepsilon_b}\right)^{\frac{3}{2}} \frac{1}{\hat{\varepsilon}^{\frac{3}{2}} + \hat{\varepsilon}_c^{\frac{3}{2}}} \frac{1}{\delta\chi} \left(\exp\left[\frac{-\left(\chi - \chi_0\right)^2}{\delta\chi^2}\right] + \exp\left[\frac{-\left(\chi + 2 + \chi_0\right)^2}{\delta\chi^2}\right] + \exp\left[\frac{-\left(\chi - 2 + \chi_0\right)^2}{\delta\chi^2}\right] \right)$$

* special thanks to Nikolai Gorelenkov, Mario Podesta, and Brian Grierson

If χ_0 depends on Ψ and $\delta\chi$ depends on Ψ and ε , $df/d\Psi$ and $df/d\varepsilon$ are very complicated. Two simplifications: 1. χ_0 = constant and $\delta\chi$ = constant \rightarrow "Simple Gaussian"

2. $\delta \chi \rightarrow \infty \rightarrow$ recover Isotropic

<u>Previous</u>: Anisotropy of EPs makes a difference; δW_B for simple Gaussian EPs is not negligible

<u>Previous</u>: Re(δW_B) and Im(δW_B) for trapped EPs <u>New</u>: Re(δW_B) for trap. and circ. EPs, with fixed formula

() NSTX

Anisotropy in MISK – part 2 (Berkery)

Anisotropy of the EP distribution can actually be more or less stabilizing than isotropy

Anisotropy of the EP distribution can actually be more or less stabilizing than isotropy

The overall effect of $\delta W_{\rm B}$ is dominated by circulating EPs

A large portion of NSTX beam EPs are circulating

Should we also be including the δW_{κ} term for circulating EPs?

$$\delta W_{H} = \sum_{j} \sum_{l=-\infty}^{\infty} 2\sqrt{2}\pi^{2} \int \int \int \left[|\langle HT_{j} \rangle|^{2} \frac{(\omega - n\omega_{E}) \frac{\partial f_{j}}{\partial \varepsilon} - \frac{n}{Z_{j}e} \frac{\partial f_{j}}{\partial \Psi}}{n \langle \omega_{D}^{j} \rangle + l\omega_{b}^{j} - i\nu_{\text{eff}}^{j} + n\omega_{E} - \omega} \right] \frac{\hat{\tau}}{m_{j}^{\frac{3}{2}}B} |\chi| \varepsilon^{\frac{1}{2}} d\varepsilon d\chi d\Psi,$$
replaced by $\sigma(\mathbf{I}-\mathbf{q})\omega_{t}$

δW_B will significantly alter δW_K for EPs for narrow Gaussian distributions not symmetric to perp. or parallel pitch

δW_B probably always has this general pattern, but the sign could change

The total effect of anisotropy can be stabilizing or destabilizing compared to isotropy, depending on χ_0

The $\delta W_{\rm B}$ term can make a significant difference

The δW_B term can make a significant difference

The effect of anisotropy on the growth rate is, generally, to make it closer to marginal than isotropy does

XXX

Reminder of MISK formulae, previous status, and what's new

$$\delta W_H = \sum_j \sum_{l=-\infty}^{\infty} 2\sqrt{2}\pi^2 \int \int \int \left[|\langle HT_j \rangle|^2 \frac{(\omega - n\omega_E) \frac{\partial f_j}{\partial \varepsilon} - \frac{n}{Z_j e} \frac{\partial f_j}{\partial \Psi}}{n \langle \omega_D^j \rangle + l\omega_b^j - i\nu_{\text{eff}}^j + n\omega_E - \omega} \right] \frac{\hat{\tau}}{m_j^{\frac{3}{2}} B} |\chi| \varepsilon^{\frac{1}{2}} d\varepsilon d\chi d\Psi,$$

$$\delta W_{\tilde{B}_{\parallel}} = \sum_{j} 2\sqrt{2}\pi^{2} \int \int \int \left[\langle HT_{j} \rangle^{*} \frac{\tilde{\mathbf{B}}_{\parallel}}{B} \frac{\chi^{2} - 1}{2|\chi|} \frac{\partial f_{j}}{\partial \chi} \right] \frac{\hat{\tau}}{m_{j}^{\frac{3}{2}} B} |\chi| \varepsilon^{\frac{1}{2}} d\varepsilon d\chi d\Psi,$$

- Bi-Maxwellian for thermal ions
 - fixed so that the pressure is consistent, and circulating ions included in $\delta W_{B_{II}}$
- Simple Gaussian for EPs
 - $\partial f/\partial \chi$ expression was wrong in $\delta W_{B_{\parallel}}!$ Now fixed.
 - Circulating EPs are now included in $\delta W_{B_{II}}$
 - Only Re(δW_{B_I}) used
 - Many more cases were run

<u>Previous</u>: A bi-Maxwellian distribution function introduces anisotropy to the thermal particles; δW_B term small

$$\begin{split} f_{j}^{bM}(\varepsilon,\Psi,\chi) &= n_{j} \left(\frac{m_{j}}{2\pi}\right)^{\frac{3}{2}} \frac{1}{T_{j\perp}T_{j\parallel}^{\frac{1}{2}}} e^{-\varepsilon\chi^{2}/T_{j\parallel}} e^{-\varepsilon(1-\chi^{2})/T_{j\perp}} & \begin{array}{c} 7\chi 10^{2} & -\varepsilon (1-\chi^{2})/T_{j\perp} \\ & -\varepsilon$$

<u>New</u>: A bi-Maxwellian distribution function introduces anisotropy to the thermal particles; δW_B term ???

$$f_j^{bM}(\varepsilon,\Psi,\chi) = n_j \left(\frac{m_j}{2\pi}\right)^{\frac{3}{2}} \frac{1}{T_{j\perp}T_{j\parallel}^{\frac{1}{2}}} e^{-\varepsilon\chi^2/T_{j\parallel}} e^{-\varepsilon(1-\chi^2)/T_{j\perp}}$$

$$\delta W_{\hat{B}_{\parallel}}^{bM} = \sum_{j} \frac{15\pi}{8} \int \int n_{j} T_{j\parallel} \left(\frac{T_{j\parallel}}{T_{j\perp}}\right) \left(\frac{T_{j\parallel}}{T_{j\perp}} - 1\right) \frac{\hat{\tau}}{B} \left[\langle HT_{j}/\varepsilon \rangle^{*} \frac{\tilde{\mathbf{B}}_{\parallel}}{B} \right]$$
$$|\chi| \left(\chi^{2} - 1\right) \left[\chi^{2} + \left(1 - \chi^{2}\right) \left(\frac{T_{j\parallel}}{T_{j\perp}}\right) \right]^{-\frac{\tau}{2}} d\chi d\Psi$$

$$\begin{split} \delta \mathsf{W}_{\mathsf{H}} \rightarrow &= \sum_{j} \sum_{l=-\infty}^{\infty} \sqrt{\pi} \int \int \int n_{j} T_{j\parallel} \left(\frac{T_{j\parallel}}{T_{j\perp}} \right) \frac{\hat{\tau}}{B} |\chi| \hat{\varepsilon}_{\parallel}^{\frac{5}{2}} e^{-\hat{\varepsilon}_{\parallel} \chi^{2}} e^{-\hat{\varepsilon}_{\parallel} (1-\chi)^{2} \left(T_{j\parallel} / T_{j\perp} \right)} d\hat{\varepsilon}_{\parallel} d\chi d\Psi \\ & \left[|\langle HT_{j} / \varepsilon \rangle|^{2} \ \frac{n \left(\omega_{*N_{\parallel}}^{j} + \left(\hat{\varepsilon}_{\parallel} \chi^{2} - \frac{1}{2} \right) \omega_{*T_{\parallel}}^{j} + \left(\hat{\varepsilon}_{\parallel} (1-\chi^{2}) \left(\frac{T_{j\parallel}}{T_{j\perp}} \right)^{2} - \frac{T_{j\parallel}}{T_{j\perp}} \right) \omega_{*T_{\perp}}^{j} + \omega_{E} \right) - \omega}{n \langle \omega_{D}^{j} \rangle + l \omega_{b}^{j} - i \nu_{\text{eff}}^{j} + n \omega_{E} - \omega} \end{split}$$

XXX

XXX

