

RFA Suppression With Different Sensors and Time Scales in NSTX

S. P. Gerhardt, J. E. Menard, S. A. Sabbagh

> **MHD TSG Group Review** Feb. 12th, 2010

College W&M Colorado Sch Mines Columbia U **CompX General Atomics** INEL

Johns Hopkins U

LANL LLNL

Lodestar

MIT

Nova Photonics

New York U

Old Dominion U

ORNL PPPL

PSI

Princeton U

Purdue U

SNL

Think Tank, Inc.

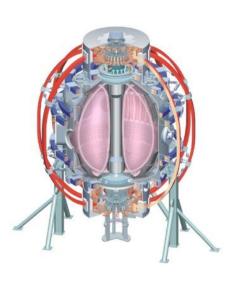
UC Davis

UC Irvine

UCLA

UCSD

U Colorado


U Illinois

U Maryland

U Rochester

U Washington

U Wisconsin

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kvushu Tokai U Niigata U **U** Tokyo **JAEA** Hebrew U Ioffe Inst **RRC Kurchatov Inst TRINITI KBSI** KAIST **POSTECH ASIPP** ENEA. Frascati CEA, Cadarache IPP, Jülich IPP, Garching ASCR, Czech Rep **U** Quebec

Overview

Background:

- RFA is the amplification of "error fields" by a stable RWM
- The resulting rotation damping can destabilize the RWM.
- In 2007, JEM utilized RFA to develop a DEFC scheme.
 - XP-701 used B_P sensors only.
- New compensations have been implemented in real-time, allowing better mode identification using B_R sensors.

Goals of proposed XP:

- Determine B_R sensor compensations and FB parameters which are optimal for error field correction.
 - Examine system response to applied n=1 fields.
 - Examine system response to the intrinsic time-varying error field.
 - Attempt to minimize rotation damping and pulse length using B_R feedback.
- Compare results to DEFC with B_P sensors.
 - Filtering from the PPPs slows the B_R response (filters noise), which can be beneficial for DEFC.
- Note: Fast feedback is out of scope.

Contributes to:

- MDC-2: Joint experiments on resistive wall mode physics
- MS Milestone R(10-1): Assess sustainable beta and disruptivity near and above the ideal no-wall limit.

Outline

- New sensor compensations
- Results from previous XPs
- Considerations and shot list for this XP

Outline

- New sensor compensations
- Results from previous XPs
- Considerations and shot list for this XP

New Realtime Sensor Compensations For Improved Mode Identification

- Sensors should measure the n=1 field from the plasma only.
 - Need to "compensate" the ith sensor B_i for other sources of field
 - With proper compensations, vacuum shots produce no signal
- Three compensations now in realtime system

Static Present From Beginning

$$C_{i,static} = \sum_{j=0}^{NumCoils-1} p_j I_j$$

816 Coefficients

OHxTF New For 2010

$$f_{i} = LPF(I_{OH} \times I_{TF}; \tau_{OHxTF,i})$$

$$f_{i} = \frac{f_{i}}{1 + \beta_{i}f_{i}}$$

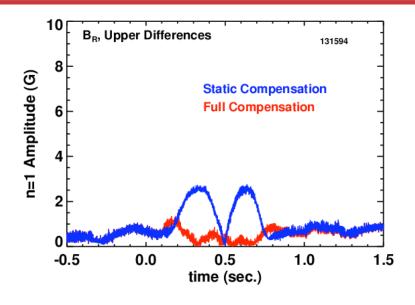
$$\mathbf{if} f_{i} > 0 \mathbf{then} C_{OH \times TF,i} = r_{p,i}f_{i}$$

$$\mathbf{if} f_{i} < 0 \mathbf{then} C_{OH \times TF,i} = r_{n,i}f_{i}$$

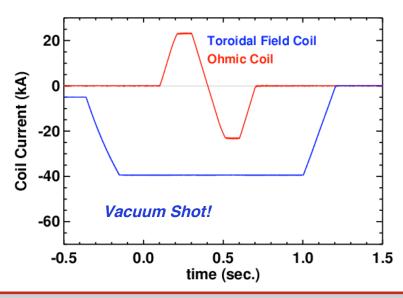
96 Coefficients

AC Compensation For Fluctuating RWM Coil Currents New For 2010

$$C_{AC,i}(t) = \sum_{j=0}^{5} \sum_{k=0}^{k_{\text{max}}} p_{i,j,k} LPF\left(\frac{dI_{RWM,j}(t)}{dt}; \tau_{AC,i,k}\right)$$

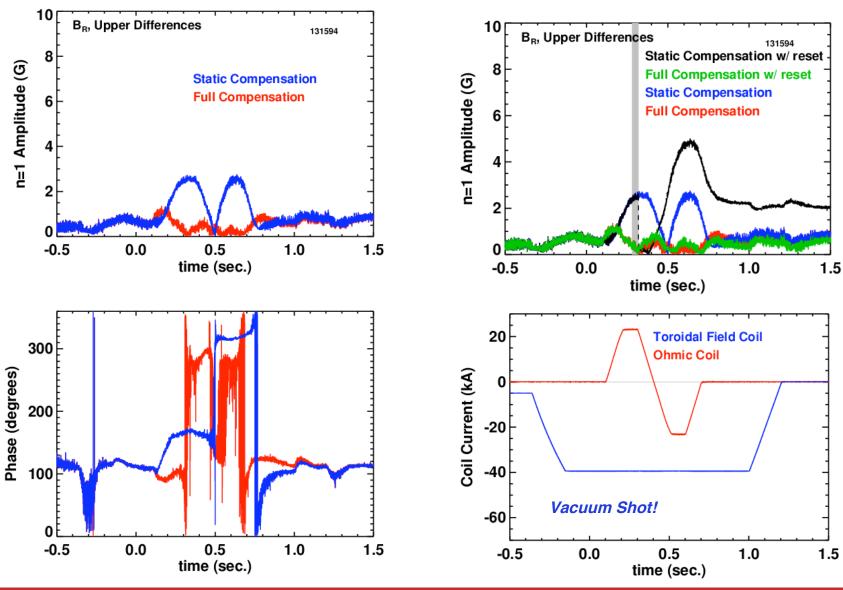

504 Coefficients

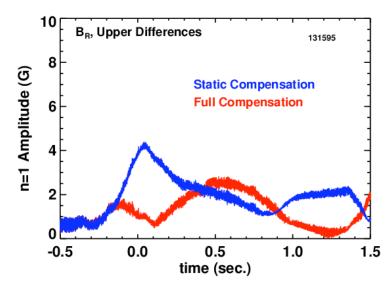
Final Field For Plasma Mode Identification

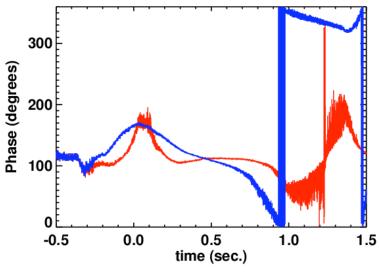

$$B_{i,plasma} = B_i - C_{i,static} - C_{i,OH \times TF} - C_{i,AC}$$

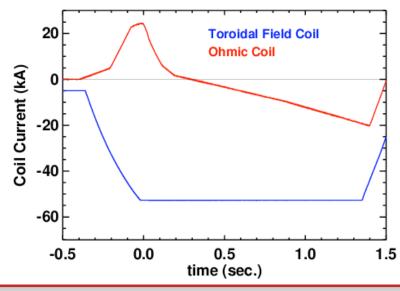
remaining compensation: vessel eddy currents via loop voltages

OH x TF Compensations Important For The B_R Sensors (I)

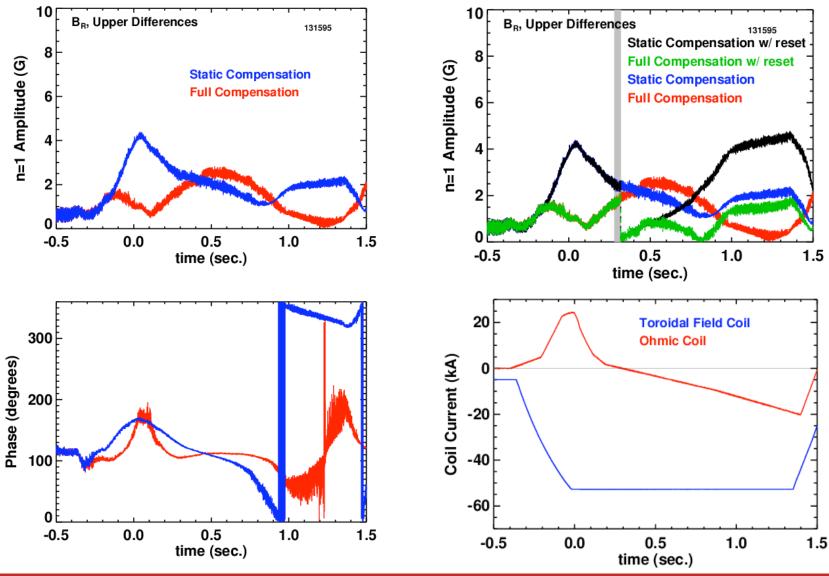


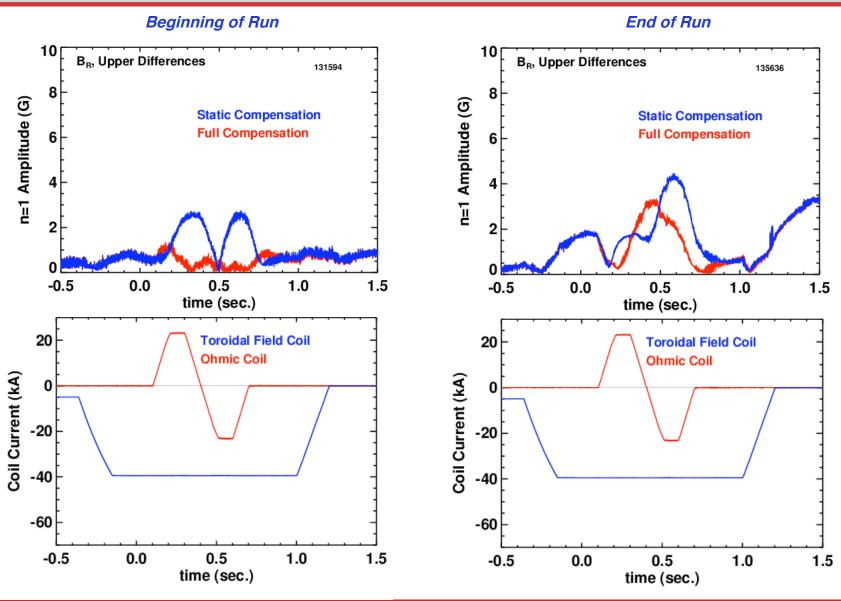



OH x TF Compensations Important For The B_R Sensors (I)



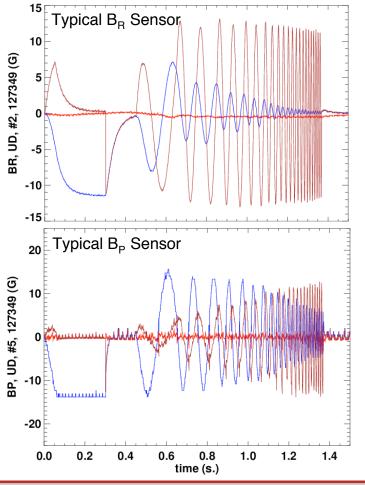
OH x TF Compensations Important For The B_R Sensors (II)




OH x TF Compensations Important For The B_R Sensors (II)

DEFC Comparison With Different Sensors (Gerhardt, et al.)

Need to Keep a Careful Eye on Compensations Through the Run

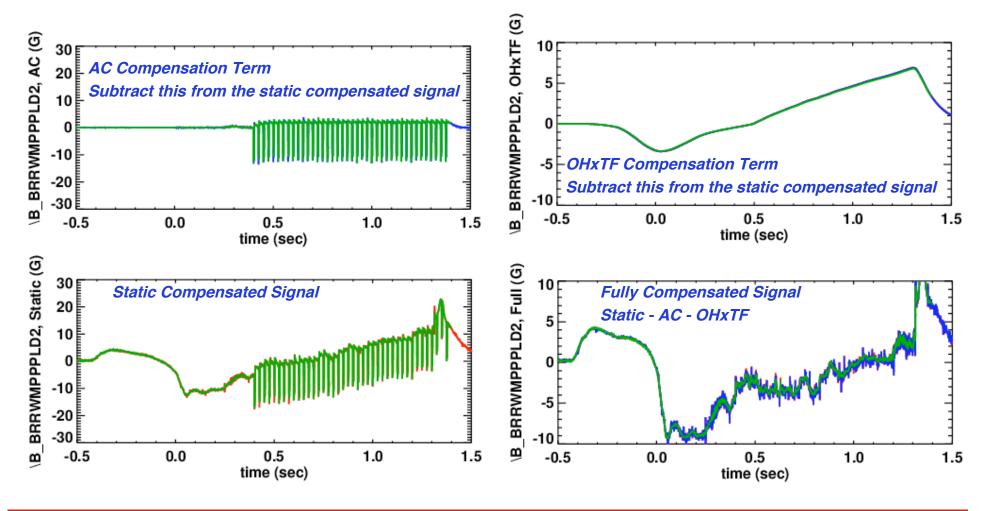


AC Compensations Remove dl_{RWM}/dt Driven Eddy-Current Pickup

$$C_{AC,i}(t) = \sum_{j}^{NumRWMCoils} \sum_{k=0}^{k_{max}} p_{i,j,k} LPF\left(\frac{dI_{RWM,j}(t)}{dt};\tau_{k}\right)$$

- Sensors should measure the n=1 field from the plasma only.
 - Direct mutual coupling of RWM coil to sensors has always been subtracted off in PCS.
 - Eddy currents due to dl_{RWM}/dt leads to pickup without plasma.
 - Eddy currents are out of phase with the coil currents.
- Realtime AC compensations may be useful for:
 - Mode identification during fast feedback.
 - SAS proposal on fast feedback.
 - Mode identification with rapidly changing preprogrammed currents.
 - ELM triggering experiments.
 - Future realtime RFA measurements.

Blue: Full Pickup
Brown: Direct Pickup Only Subtracted
(Previously in PCS)
Red: Fully Compensated
(Now in PCS)



New Sensor Compensation Fully Implemented in PCS "miu" Algorithm (I)

Red: Calculations in idl, from Jon's routines

Blue: Calculations in idl, in a form appropriate for PCS (streamlining a bunch of loops)

Green: Archived PCS Calculations

New Sensor Compensation Fully Implemented in PCS "miu" Algorithm (II)

Red: Calculations in idl from Jon's routines

Blue: Calculations in idl in a form appropriate for PCS (streamlining a bunch of loops)

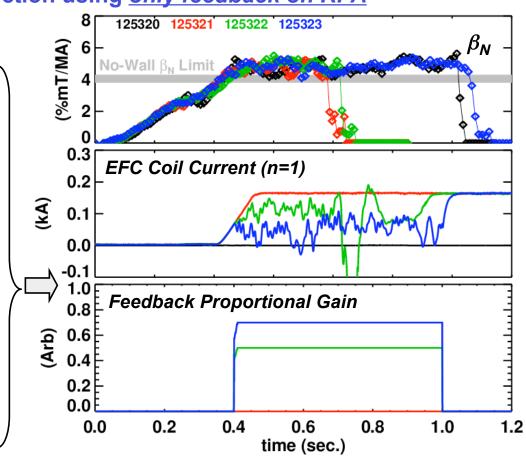
Green: Archived PCS Calculations

More About the New "miu" Algorithm

- Provides identical "outputs" as the present mid algorithm
 - Mode amplitude and phase from B_P, B_R, & B_P+B_R sensors.
 - Fully interchangeable with the mid algorithm for RWM control.
- Allows separate re-zeroing times for B_R and B_P sensors.
 - Old mid algorithm had a single common re-zeroing time.
- Has switches to turn off the new compensations.
 - "static only"
 - "static +AC"
 - "static+OH×TF"
 - "static+AC+OH×TF
- All compensation coefficients are read from the model tree.
 - Many new nodes open in the model tree in September.
- Archives many many internal calculations for comparison to off-line.
- Prepares sensor data for the state-space controller.

Outline

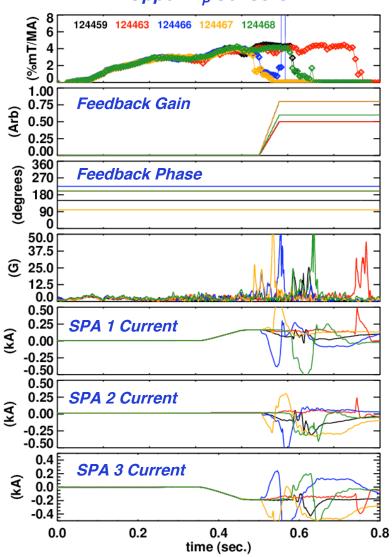
- New sensor compensations
- Results from previous XPs
- Considerations and shot list for this XP

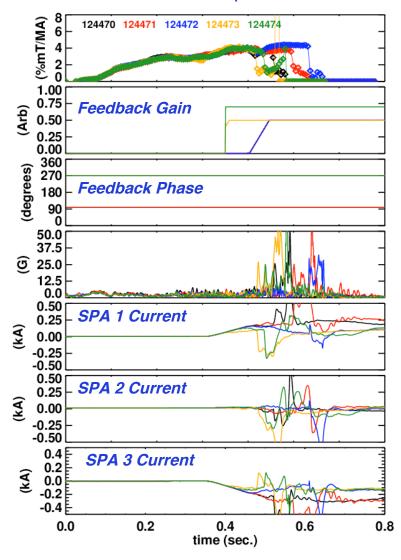


2007 Experiment Had a Phase Scan... ...and a Gain Scan

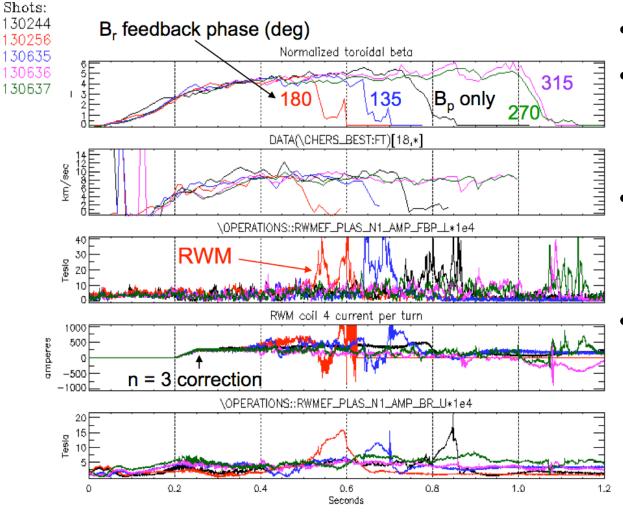
- Pre-programmed n=1 EF correction requires a priori estimate of intrinsic EF
- Detect plasma response → EF correction using only feedback on RFA

RFA Suppression Algorithm


- Use discharge with rotationally stabilized RWM.
- Deliberately apply n=1 EF in order to reduce rotation, destabilize an RWM.
- Find feedback phase that reduces the applied n=1 currents (B_p sensors).
 - Direct coil-sensor pickup is removed.
- Increase the gain until currents are nearly nulled and plasma stability is restored.


→ Use same gain/phase settings to suppress RFA from intrinsic EF and any unstable RWMs

2007 Experiment Had a Phase Scan... ...and a Gain Scan



"Combined" B_P Sensors

2008 Also Had Feedback Attempt With B_R Sensors

- Combined B_P + B_R
- B_R feedback phases around ~290 appear to be useful.
- B_R feedback gains of 0.7 appeared stable.
- Use these parameters as starting points for the XP.

XP-802, Sabbagh et al.

Outline

- New sensor compensations
- Results from previous XPs
- Plan for this XP

Experimental Plan (I)

Background Testing

- Algorithm tested already, but not as built into the present PCS.
- Run some cases on the 2nd computer when the run starts, using shot data.
 - Compare to outputs of the "identical" idl code.
- Introduce the miu algorithm as the primary mode-ID algorithm for standard RWM feedback.
- Use 50% test shots to check for stability of OHxTF compensations.
- Qualify the reference discharge.

(4 shots)

- High- β discharge with n=3 correction, but no fast feedback.
 - 800 kA SAS and JB shots with high β_N from 2009 (like 133775)?
 - Lasted 1.15 seconds using only (-)10 kA of OH current.
- Should suffer a rotation collapse and RWM
 - Induce with n=1 applied field as necessary (as in XP-701).
 - Phase relationship with OHxTF field?

Experimental Plan (II)

Apply (only) B_R n=1 feedback with varying phases and gains.

(10 shots)

- Low-pass filter the feedback request in order to eliminate fast feedback.
- Gain and phase optimization
 - Start with gain and phase from XP-802.
 - Scan both, starting with the phase, then optimizing the gain.
 - Try to achieve cancellation of the EF effect as in XP-701.
- Repeat best test with OHxTF compensations turned off.
- Particular emphasis on the edge rotation sustainment.
- Apply B_P n=1 feedback on the same situation.

(6 shots)

- Recreate phase scan in XP-701 for comparison.
- Test FB noise level, rotation evolution in similar situations...can B_R cancel better?
- Repeat with intrinsic EF.

(4 shots)

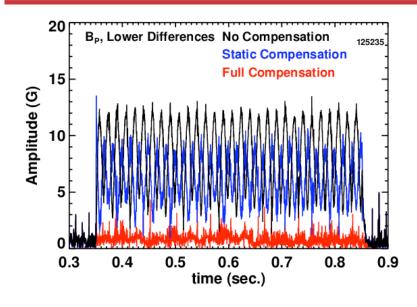
- Raise I_P to ~1MA in order to get to larger OH currents.
- Shots with both "optimal" B_R and B_P feedback separately, then combined.
- Test compensation of time varying error fields.

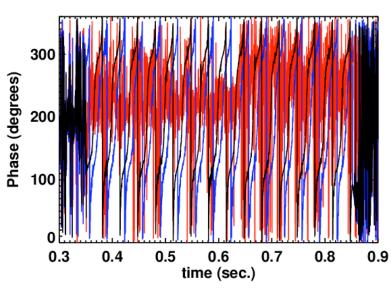
(6 shots)

- Choose "best" sensor polarity, phase and gain.
- Apply n=1 TWs with 10, 20, 30, 40 Hz.
- Determine frequency above which the TW is not fully cancelled by FB.
- Repeat without AC compensations

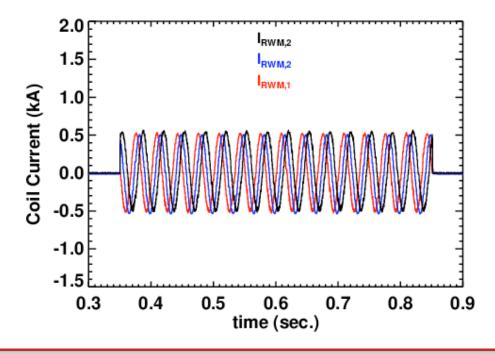
Total: 30 Shots

Backup




Goals For Proposed Experiment

- Qualify B_R sensors for error field correction.
 - Determine the optimal phase shift and gain for DEFC.
 - Can start with results from Steve's XP in 2008
 - Determine if OHxTF sensor compensation is necessary...or beneficial...or irrelevant.
 - Fast feedback is out of scope
- Determine if one or the other sensor type is better for correction:
 - Reduced fluctuations in the FB coil current?
 - Improved rotation sustainment?
 - Higher gain?
- Examine β-dependence of FB response.



AC Compensations Can Be Important For

 Large amplitude modulation in signal with static compensation

Other Stuff

- Lithium
 - LITER at ~200 mg/shot
 - No LLD
- Diagnostics
 - Profile diagnostics
 - RWM detection

- Analysis
 - MSE reconstructions.
 - DCON for proximity to ideal stability limits.
 - Intrinsic EF and detailed RWM sensor analysis.

