EF scalings in H mode
2. 2/1 NTM stability and EF sensitivity vs q profile

Proposals for Tearing Stability Studies on NSTX in 2010

by Richard Buttery¹

with Stefan Gerhardt², Rob La Haye¹, Jong-Kyu Park², Steve Sabbagh³ and possible Holger Reimerdes!

Presented to the Macroscopic Stability meeting, Jan 2010

¹General Atomics, USA ²Princeton Plasma Physics Laboratory, NJ. ³Columbia University, NY.

Work funded by the US DOE.

ITER's Error Field Scalings Deduced for *Ohmic* Plasmas – regime of concern at the time (low ne before H mode)

R J Buttery, NSTX MHD meeting, Jan 2010

COMPASS-D had much stronger rotation scaling with BT than other devices – *likely due to rotation behavior*

- Error field threshold when EF overcomes plasma rotation
 - EF scaling implicitly folds in rotation variation with Bt, ne
- Will plasma rotation in NBI heated H mode scale same as self generated rotation in Ohmic plasmas?
 - **No!** (unless you're lucky)
- Need new experiment to determine how EF thresholds scale in H-modes!

Proposals for 2010 on NTMs & EFs, 3 R J Buttery, NSTX MHD meeting, Jan 2010 Rotating mode accessed at lower bootstrap drive with less rotation shear →

- But can get two types of mode
 - Locked or rotating
 - What is practical limit given these apparently different processes?

Proposals for 2010 on NTMs & EFs, 4 R J Buttery, NSTX MHD meeting, Jan 2010

In H modes, error fields can also destabilizing rotating modes – but does this matter?

- Error field brakes plasma:
 - If close to 2/1 NTM beta limit, the 2/1 NTM can is destabilised by the reduction in rotation shear
 - Further from NTM limit rotation braking reaches bifurcation point for 'penetration' – bifurcation to large locked mode

 Key point is mode forms at lower beta/bootstrap when substantial rotation braking happens

 Criteria is about overcoming plasma rotation to reach high braking regime

- A lot like Ohmic criterion

Proposals for 2010 on NTMs & EFs, 5 R J Buttery, NSTX MHD meeting, Jan 2010

Governing Physics – á la old Ohmic theory... Penetration is about overcoming the plasma rotation

- Modes form when resonant surface is braked by resonant response to EF to half it's natural frequency
 - Tiny static island induced by EF
 - Viscous forces try to keep bulk plasma rotating slipping past the island *this opposes island growth*
 - Torque exerted through island and viscosity to brakes plasma
 - N=3 NTV effects assist this process?
 - If rotation slows enough, island can grow, increasing torque and bifurcating to a locked mode state
 - Threshold scales as $B_{pen} \sim B_T \, \omega_0 \, \tau_A \, (\tau_{rec} \, / \, \tau_v)^{1/2}$
 - ω_0 often taken to be electron diamagnetic rotation
- Criteria could also be regarded/generalised as condition for when we approach rapid rotation change
- Critical elements are: what determines ω_0 ; whether plasma response changes; and how readily plasma rotation is overcome

Proposals for 2010 on NTMs & EFs, 6

R J Buttery, NSTX MHD meeting, Jan 2010

DIII-D just identified likely strong scalings with n_e and B_T Need to confirm & want extrapolations for ST

• H mode density scaling steeper than Ohmic - favorable

- But toroidal field scaling much worse
 - And absolute levels of field required are modest (~1-2G)
 - Raises concern & needs investigation elsewhere

Proposals for 2010 on NTMs & EFs, 7

R J Buttery, NSTX MHD meeting, Jan 2010

Experiments Are Needed to Extrapolate EF Threhsolds to Next Step Devices – like ST-CTF or ITER

- Ramp up error field to measure mode thresholds
- Scan in ne and Bt
 - Infer machine size scaling from Connor-Taylor constraint
- Hard part:
 - Maintain constant shape, betan, li and q profile at time of mode onset – can we do this?
 - Also what to do with rotation? (Natural beam drive, or n=3 braking to control to given M_A)
- These experiments are essential if you want to understand how the torque balance based error field threshold extrapolates to future devices.

Proposals for 2010 on NTMs & EFs, 8 R J Buttery, NSTX MHD meeting, Jan 2010

Proposed approach

- Build on successful shot developed in 2009
 - Scan in Bt(~Ip) and density
 - Li to control ELMs & conditions
 - Adjust NBI start time if qmin (MHD) trajectory varies
 - Ramp EF to mode… but:
 - $\hfill \beta_N$ is time varying: Adjust EF ramp to get mode strike at similar β_N
- Uncertainties are rotation variations (strip out from other scans) and more profound profile changes

Shot Plan – counting good shots

- 1. Establish reference and tune if needed 3 shots
- Change density (ideally: puff gas after 300ms to avoid big profile effect) 3 shots
 - If needed tune heat switch on time
 - Tune EF ramp rate/time to get mode at same betan
- 3. Repeats at different densities, anticipating adjustments based on item 2 observations: 3 more points 6 shots
- 4. Change to lower toroidal (Ip in proportion) 3 shots
 - Repeating above reoptimisation as in step 2.
- 5. Change to higher toroidal field 2 shots

Proposals for 2010 on NTMs & EFs, 10 R J Buttery, NSTX MHD meeting, Jan 2010

Questions

- Is profile compensation approach good enough (adjust NBI on time to get similar qmin)?
- Best way to handle rotation for scaling?
 - Live with whatever rotation we get from co beams (presumes a correction would be needed for future device – but leaves scope of this to an other study – JKP?)
 - This is reasonable like Ohmic we just regard rotation as a hidden variable, implicit in process but determined by other parameters
 - Fix NB levels for fixed torque
 - Fix rotation with n=3 fields (too difficult I think for this 1st cut & raises issues of validity, as n=3 fields help access mode!)
- Impact of 2010 plasma conditions/machine changes?
- Intershot MSE qmin possible?

Proposals for 2010 on NTMs & EFs, 11 R J Buttery, NSTX MHD meeting, Jan 2010

Role of q profile in 2/1 NTM stability

Proposals for 2010 on NTMs & EFs, 12 R J Buttery, NSTX MHD meeting, Jan 2010 JET Hybrid Plasma Sit Above β Limit of Other Devices: Other parameters coming into play – q profile?

- JET sits above DIII-D and JT-60U trends
 - JT-60U lower rotation \rightarrow lower β_N
 - But DIII-D high rotation
- Possible collisionality role? <u>No</u>:
 - JET unstable at \blacklozenge low v^*
 - But stable at +high and $^{\circ}$ low $\nu^{^{\star}}$
- Collisionality provides 'access condition' for NTM
 - Enables q profile modification
 - Can change Δ'
 - q profile is the parameter to test...

Heating timing scan shows 'just right' degree of relaxation needed

NSTX an ideal place to explore q profile role in detail

- Plasma naturally relaxes vs time
- Can ramp beta to excite mode.
 - Scan NBI timing & power to vary \boldsymbol{q}_{min} vs $\boldsymbol{\beta}_N$ trajectory
- Repeats with EF applied
 - to see if plasma response stronger as tearing mode β limit applied

DIII-D: Plasma response to error field increases with β_N :

 How does response change with Δ'?

Detailed Considerations

- Similar approach to last experiment, but here try to vary timing of NBI start to change q profile
 - Most interested in qmin value does approach to 1 have special role?
 - A fine scan of this would be very insightful
 - Trajectory approach is powerful always get mode just change what beta and qmin we get it at
 - by varying time and power to change beta ramp up rate

• EF response is a novel element

- Looking for change with deltaprime (influenced by qmin) would be a first
 - Can we probe EF response readily how best done on NSTX?

Proposals for 2010 on NTMs & EFs, 16 R J Buttery, NSTX MHD meeting, Jan 2010

Shot Plan

- More straightforward than EF study as profiles and beta onset of mode are allowed to vary
- Repeats of reference shot at different power levels and timings – 10-12 good shots desirable
- Repeats of favorite cases with EF response probed vs time as beta rises to limit – 5-6 shots
 - Possible extension to look at error field threshold with ramp applied some pre-determined interval before natural mode
 - What interval?

Proposals for 2010 on NTMs & EFs, 17 R J Buttery, NSTX MHD meeting, Jan 2010