

XMP-65 Optimization of \beta-Control XP-1019: Test of β-Control for Disruptivity Reduction

College W&M Colorado Sch Mines Columbia U

CompX General Atomics

INEL

Johns Hopkins U

LANL LLNL

Lodestar

MIT

Nova Photonics

New York U

Old Dominion U

ORNL PPPL

PSI

Princeton U

Purdue U

SNL

Think Tank, Inc.

UC Davis

UC Irvine

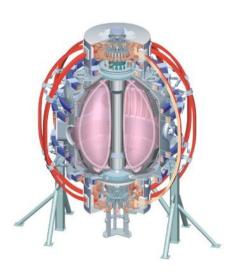
UCLA

UCSD

U Colorado

U Illinois

U Maryland


U Rochester

U Washington

U Wisconsin

S.P. Gerhardt, E. Kolemen, D. A. Gates, S. A. Sabbagh

Macrostability TSG Group Review

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kvushu Tokai U Niigata U **U** Tokyo **JAEA** Hebrew U Ioffe Inst **RRC Kurchatov Inst TRINITI KBSI** KAIST **POSTECH ASIPP** ENEA. Frascati CEA, Cadarache IPP, Jülich IPP, Garching ASCR, Czech Rep **U** Quebec

Overview

Background

- Rudimentary PCS control of NB injection was shown in 2008.
- β_N control was demonstrated in 2009.
 - Not "tuned up".
- Improved rtEFIT basis vectors were implemented at the very end of the 2009 run.

Goals of Proposed XP:

- Achieve reasonable values of the parameters in the β_N control algorithm.
- Test the ability of β_N control to enable non-disruptive operation near the β_N limit.

Contributes to:

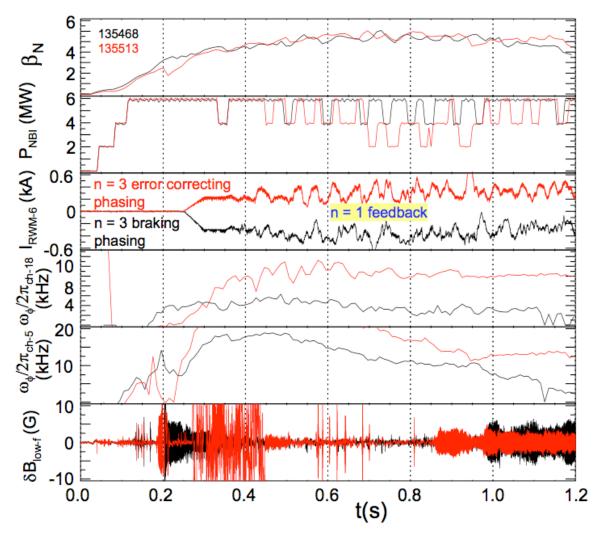
 MS Milestone R(10-1): Assess sustainable beta and disruptivity near and above the ideal no-wall limit.

Implementation of β_N Control in NSTX

• Compare filtered β_N value from rtEFIT to a request, and compute an error. $e = \beta_{N \text{ request}} - LPF(\beta_{N \text{ RTFFIT}}; \tau_{LPF})$

Use PID on the error to compute a new requested power.

$2009 \ PID \ Algorithm$ $\Delta P_{inj} = P_{\beta_N} \overline{C}_{\beta_N} e + I_{\beta_N} \overline{C}_{\beta_N} \int e dt + D_{\beta_N} \overline{C}_{\beta_N} \frac{de}{dt}$ $P_{inj,i} = P_{inj,i-1} + \Delta P_{inj}$ $\overline{C}_{\beta_N} = \tau \frac{I_P V B_T}{200 \mu_0 a} \cdot \frac{dt}{0.001}$

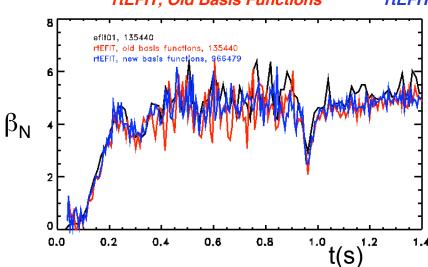

$\begin{aligned} & 2010 \ PID \ Algorithm \\ P_{inj} &= P_{\beta_N} \overline{C}_{\beta_N} e + I_{\beta_N} \overline{C}_{\beta_N} \int e dt + D_{\beta_N} \overline{C}_{\beta_N} \frac{de}{dt} \\ \overline{C}_{\beta_N} &= 1000 \cdot \tau \cdot \frac{I_P V B_T}{200 \mu_0 a} \end{aligned}$

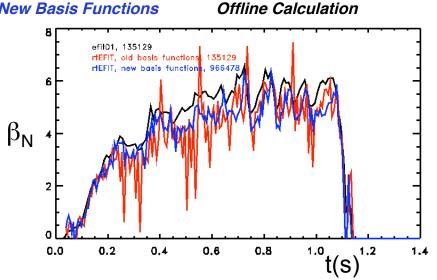
- Use power from the PID operation, source powers, and "batting order" to determine the duty cycles for each source.
- Use the duty cycles and min. on/off times to determine when to block.

Many Available Adjustments

- Filter time constant on the β_N value sent from rtEFIT.
 - Useful for smoothing transients and "noise" in the rtEFIT β_N .
- Proportional, integral, and derivative gains.
 - Determines the response of the system to transients.
- Batting order array.
 - Determines which sources modulate
 - Switch to a different source if a given source reaches the maximum number of blocks.
 - Also able to prevent A modulations, to keep MSE and CHERS.
- Source powers
 - Can be adjusted in order to prevent modulations.
- Minimum Source On/Off Times.
 - Smaller values will lead to better control, but possibly at the expense of source reliability.
 - 20 msec. has been used so far, with reasonable success (still rather coarse compared to the confinement time).
- With a few additional lines of code: explicit injected power request.
 - Request a power waveform, and PCS determines modulations to achieve it.

β_N Control Has Been Demonstrated in 2009


- β_N algorithm
 compensates for loss of
 confinement with n=3
 braking.
- Control works over a range of rotation levels.
- Modulations in β_N are not severe, even with 20 msec on & 20 msec off.
- Goal of XP is to optimize the system.


S.A. Sabbagh, 2009 NSTX Results Review

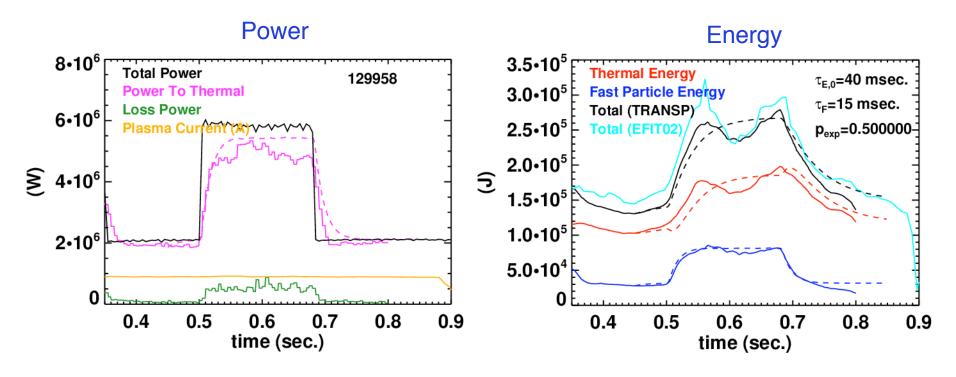
Modifications to the rtEFIT Basis Functions Resulted in Improved Real-time Reconstructions

- Occasional poorly converged equilibria lead to incorrect outer gap, β_N
 - Kick off an deleterious transient in the vertical field coil current.
 - Edge current not allowed
- New basis function model based on those developed for off-line magnetics-only reconstruction (Columbia University) $p'(\psi_n) = a_1 \psi_n (1 \psi_n)$
 - Tested on literally > 2 million equilibria
 - Finite edge current through $ff'(\psi_n)$
- $ff'(\psi_n) = b_0 + b_1 \psi_n \left(1 \frac{1}{3} \psi_n^2\right) + b_2 \psi_n^2 \left(1 \frac{2}{3} \psi_n\right)$
- Considerable real-time reconstruction improvement
 - Reduction in β_N "noise" indicative of improved reconstructions rtEFIT. Old Basis Functions rtEFIT. New Basis Functions

Improvement made on 2nd to last day of run...SPG & DG (& SAS?) agree that we should start the run with these.

Simple Model For NB β-Control

Coupled equations for the stored energy in thermal particles and fast


particles.
$$\frac{dW_{th}}{dt} = \frac{W_f}{\tau_f} - \frac{W_{th}}{\tau_{E,th}} \qquad \tau_{E,th} = \tau_{E,0} \left(\frac{4 \times 10^6}{P_{inj}}\right)^{P_{\rm exp}} + {\bf random fluctuations}$$

$$W = W_{th} + W_f \qquad P_{inj} = P_{\beta_N} \overline{C}_{\beta_N} e + \frac{dW_f}{dt} = P_{inj} - \frac{W_f}{\tau_f} \qquad \beta_N = \frac{100 \cdot 2 \cdot \mu_0 \cdot a \cdot W}{I_P \cdot V \cdot B_T} + {\bf noise} \qquad I_{\beta_N} \overline{C}_{\beta_N} \int e dt + D_{\beta_N} \overline{C}_{\beta_N} \frac{de}{dt}$$

- Three free parameters in model:
 - Coefficient on time-scale for thermal energy loss: $\tau_{E,0}$
 - Time-scale of energy transfer from fast to thermal particles: τ_f
 - Power degradation on the thermal confinement: p_{exp}
- Simple model designed for control.
 - No direct fast-ion loss (Shine through, charge exchange, bad orbit).
 - Collapse thermal electron and ion energy loss rates into a single parameter.
- Tune the model parameters (τ_f , $\tau_{E,th}$, p_{exp}) against TRANSP runs of shots with NB modulations.
- Use model in a feedback simulation to estimate gain.

Example of Model

- Solid: TRANSP Quantities
- Dashed: Model
- 900 kA fiducial like discharge
- $\frac{dW_{th}}{dt} = \frac{W_f}{\tau_f} \frac{W_{th}}{\tau_{E,th}} \qquad \tau_{E,th} = \tau_{E,0} \left(\frac{4 \times 10^6}{P_{inj}}\right)^{P_{\text{exp}}}$ $\frac{dW_f}{dt} = P_{inj} \frac{W_f}{\tau_f} \qquad W = W_{th} + W_f$
- Enforced that source C is only 80% absorbed in the model.

Procedure For Picking Gains (2010 Gain Scheme)

Feedback Equation (proportional FB only):

$$P_{inj} = P_{\beta_N} \overline{C} e = P_{\beta_N} \overline{C} (\beta_{N,req} - \beta_N)$$

$$\overline{C}_{\beta_N} = 1000 \cdot \tau \cdot \frac{I_P V B_T}{200 \mu_0 a}$$

Relationship between β_{N} , W_{MHD} , and P_{ini} :

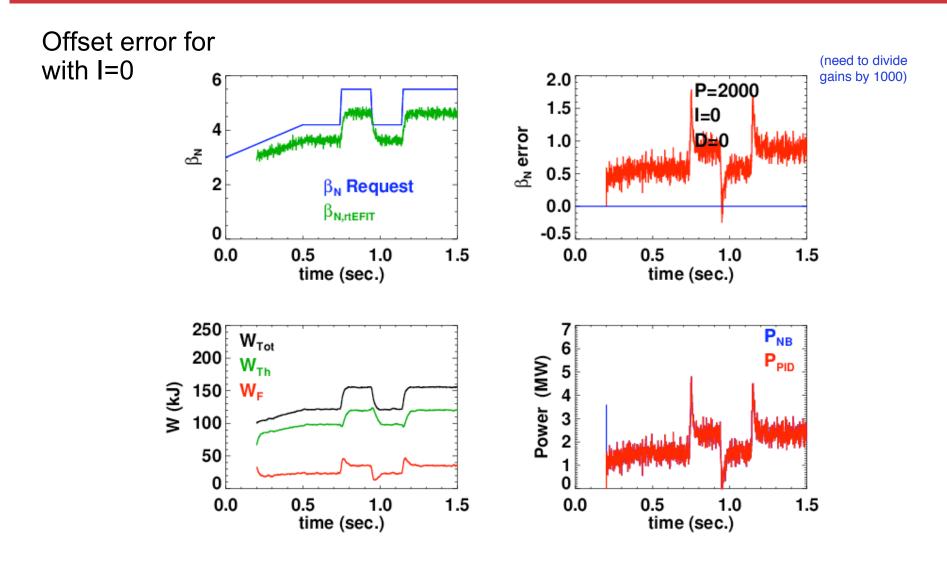
$$\beta_{N} = \frac{100 \cdot 2 \cdot \mu_{0} \cdot a \cdot W}{I_{P} \cdot V \cdot B_{T}} = C_{\beta \to W_{MHD}} W = C_{\beta \to W_{MHD}} \tau P_{inj}$$

Combine these to relate P_{ini} to $\beta_{N,reg}$:

$$P_{inj} = \frac{P_{\beta_N} \overline{C}}{1 + P_{\beta_N} \tau \overline{C} C_{\beta \to W_{MHD}}} \beta_{N,req}$$

Combine these to relate β_N to $\beta_{N,reg}$:

$$\beta_{N} = \frac{P_{\beta_{N}} \tau \overline{C} C}{1 + P_{\beta_{N}} \tau \overline{C} C} \beta_{\beta \to W_{MHD}} \beta_{N,req}$$


Choose
$$P_{\beta N}$$
 to achieve a given $f=\beta_N/\beta_{N,req}$: $P_{\beta_N}=\frac{f}{1-f}\frac{1}{\tau \overline{C}C_{\beta \to W_{MHD}}}=\frac{f}{1-f}\left(\frac{1}{1000 \cdot \tau^2}\right)$ Confinement is an uncertainty in

Choose $I_{\beta N}$ as $P_{\beta N}$ normalized by a representative time: This yields I_{8N} ≈40

$$I_{\beta_N} = \frac{P_{\beta_N}}{\tau}$$

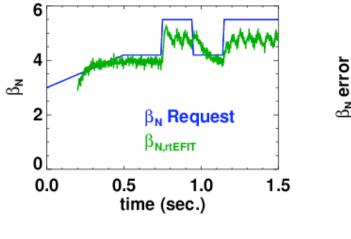
uncertainty in determining the optimal aains.

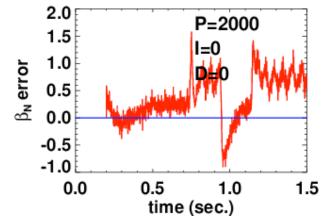
Simulation #1: Proportional FB Only, Continuous Power, With Noise in Confinement and β_N

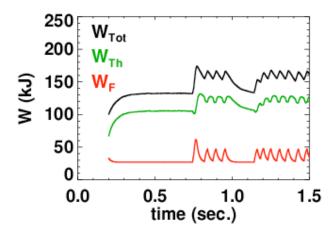
Simulation #2: Proportional FB Only, Modulating All Sources, With Noise in Confinement and β_N

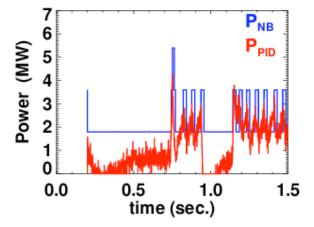
Offset error for (need to divide with I=0 gains by 1000) 2.0 6 P=2000 1.5 4 β_N error 1.0 $\frac{\beta}{N}$ 0.5 2 β_N Request 0.0 $\beta_{N,rtEFIT}$ 0 -0.5 0.5 0.0 0.5 1.0 1.5 0.0 1.0 1.5 time (sec.) time (sec.) 250 P_{NB} $\mathbf{W}_{\mathsf{Tot}}$ \mathbf{P}_{PID} 200 Power (MW) 150 100 50 Algorithm Modulated 0.0 0.5 1.5 0.0 1.0 1.0 0.5

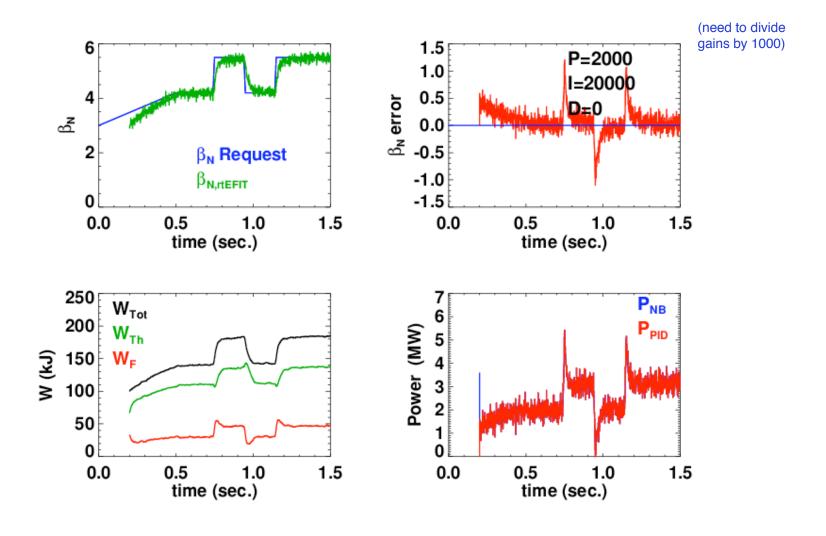
time (sec.)

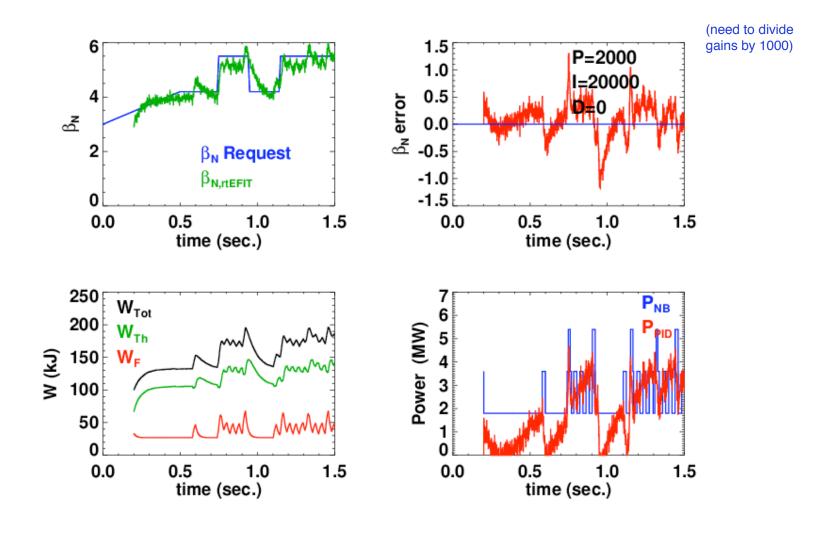

both A & B


time (sec.)

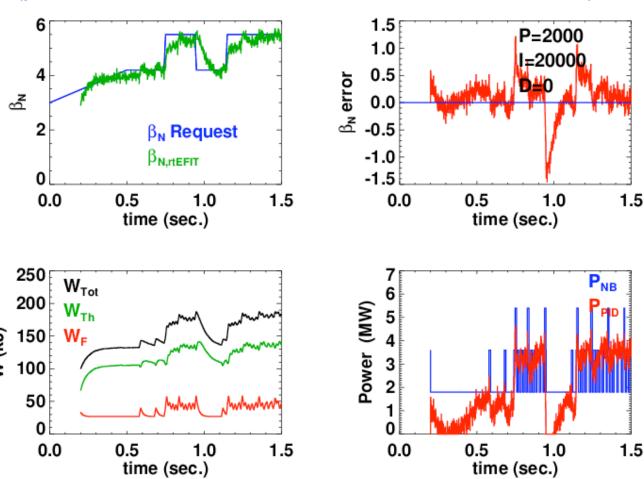

Simulation #3: Proportional FB Only, Modulating B & C Only, With Noise in Confinement and β_N

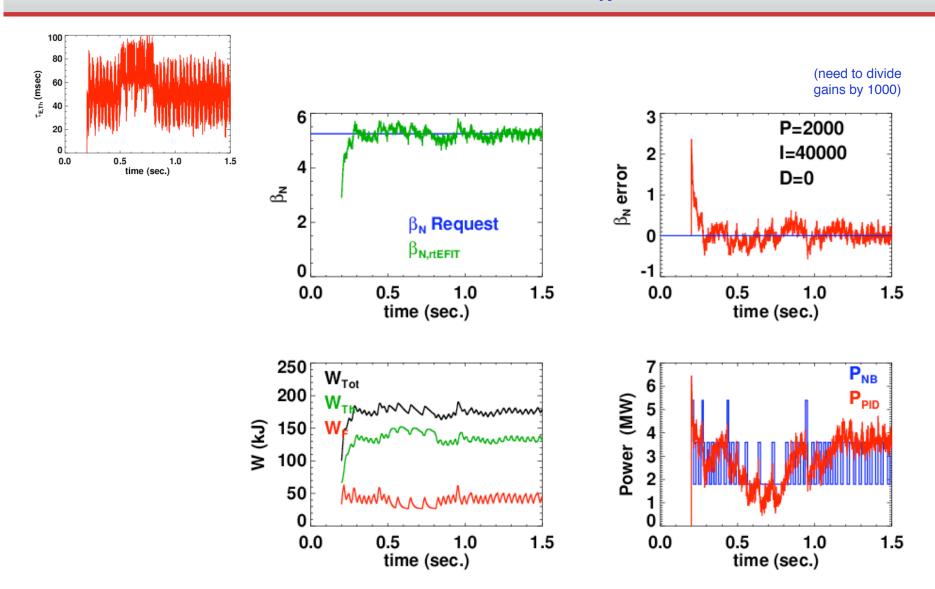

Offset error for with I=0





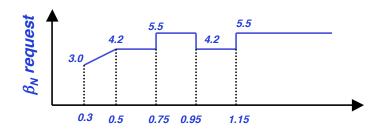
Simulation #4: Proportional + Integral FB, Continuous Power, With Noise in Confinement and β_N


Simulation #5: Proportional + Integral FB, Modulating B & C Only, With Noise in Confinement and β_N

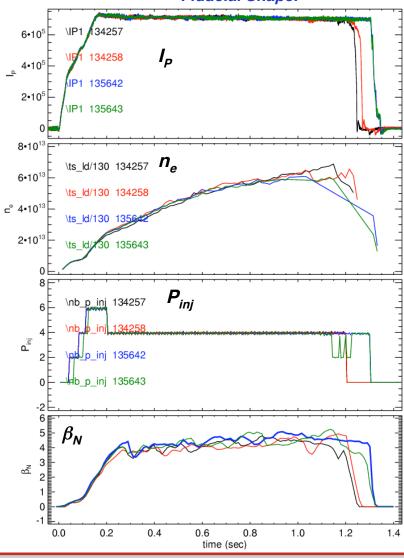

Simulation #5: Proportional + Integral FB, Modulating B & C, With Noise in Confinement and β_N , Rapid Modulation

10 msec on/10 msec off, no limits on # of blocks (previous simulations had 20 on/20 off, 19 blocks max)

(need to divide gains by 1000)



Simulation #6: Proportional + Integral FB, Modulating B & C, With Noise in Confinement and β_N , Confinement Change



XMP Step: Algorithm Optimization Philosophy

- Establish a high-performance reference.
 - Should be long pulse at 4 MW, to allow room for modulations.
 - Consider 700-800 kA fiducial.
- Add in β_N control with reasonable parameters, steps and ramps in β_N request.
- Adjust gains to achieve best match to desired waveform.
- What min on/off times to use?
 - 20/20 was used last year.
- Use full RWM control.

Potential Target: Long Pulse 700 kA with Fiducial Shape.

XMP Step: Algorithm Optimization Shot List

- Testing Algorithm In Background (as many shots as necessary)
 - Check modified gain scheme.
 - Check batting order transitions.
 - Check quality of β_N calculation.
- Establish 4MW target with pre-programmed beams. (1 Shots)
- Introduce beta-feedback waveform, modest gains.
 (2 Shots)
 - Usewaveforms with Steps
 - 20 on / 20 off to begin with.
 - P=2, I=0
- Increase gains in small increments. (4 shots)
 - P=2, I=10
 - P=2, I=20
 - P=3, I=40
- Repeat optimal with 15 on / 15 off modulations.
 (2 shots)
 - May need to adjust the batting order.

XP Step: Test For Disruptivity Reduction Philosophy

- Establish a discharge regime that disrupts with a 6 MW of input power.
 - Maybe just use the previous 700 kA target?
 - Long pulse 700 kA, 0.4 T, high-κ target from XP-836 (135440)?
- Re-run with β_N request reasonably below the disruptive value.
 - Should not disrupt any more
- Increase the β_N request in small increments (a few shots) to where it disrupts.
 - Bracket the unstable heating power.
- Use pre-programmed beams with about the same power waveform.
 - These are pre-programmed
 - Re-run and see if the level of β_N fluctuations is increased, disruptions re-appear.
- Status of RWM Control?
 - Inclined to use slow control (DEFC), but not fast feedback.
 - Provides test of disruption control in the wall-stabilized regime.

XP Step: Test For Disruptivity Reduction Shot List

Reload Target Shot

(2 Shots)

- Particular shot TBD.
- Demonstrate disruption at 6 MW of power.
- Establish a series of discharges with various levels of β_N requests.
 (6 shots)
 - $-\beta_N$ =4.5, 5.0, 5.5, 6.0, 6.5,...or until disruptive RWM activity begins.
 - Maybe test intermediate values of β_N
- Repeat marginally stable case with approximately matched input power.
 - Reduce the requested beam power waveform to ~5 time points.
 - Enter these into PCS
 - Use pre-programmed power request and let PCS determine the modulations frequency.

