

<u>XP1062: NTV behavior at low ion</u> collisionality and maximum variation of ω_E

S.A. Sabbagh, R.E. Bell, J.W. Berkery, S.P. Gerhardt, J-K Park, et al.

Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY, USA

Princeton Plasma Physics Laboratory

NSTX Macrostability TSG Meeting

January 8, 2010 Princeton Plasma Physics Laboratory

Columbia U Comp-X **General Atomics** INEL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** NYU ORNL **PPPL** PSI **SNL** UC Davis **UC** Irvine UCLA UCSD **U** Maryland **U New Mexico U** Rochester **U** Washington **U** Wisconsin Culham Sci Ctr Hiroshima U HIST Kyushu Tokai U Niigata U Tsukuba U **U** Tokvo **JAERI** loffe Inst TRINITI **KBSI** KAIST ENEA. Frascati CEA, Cadarache IPP, Jülich **IPP.** Garching **U** Quebec

Department of En

<u>XP1062: NTV behavior at low ion collisionality</u> and maximum variation of ω_F

Motivation

- Determine key aspects of neoclassical toroidal viscosity (NTV) physics to gain confidence in extrapolation to future devices
- Goals / Approach
 - □ Examine dependence of NTV on v_i , using new LLD capability, focus on the NTV scaling/comparison to theory at the lowest v_i^* possible
 - Key for both low and high rotation devices (ITER, ST-CTF)
 - Complete investigation of NTV increase at sufficiently low (nq) $\omega_{\rm E}$, (compare to superbanana plateau (SBP) theory); examine highest $\omega_{\rm E}$
 - Additional $nq\omega_E$ variation by running n = 2 (vs. 3) if time allows
 - Determine NTV offset rotation (no strong effect seen yet)
 - Consider new approach using RF in addition to standard approach)

Addresses

- ITPA joint experiment MDC-12
- ReNeW Thrust 16.4
- NSTX Milestone IR(11-2)
- NSTX planned rotation control system
- Request 1 run day (0.5 scheduled at Forum)

Significant variations made to nqω_E(R) to examine effect on NTV braking in XP933

Earlier work

 V_o damping consistent with "1/v regime" magnitude & scaling (T_i^{5/2})
 Zhu, et al., PRL 2006; Sabbagh, et al. (accepted NF 12/09)

XP933 status

- NTV braking observed over all v_i/nqw_E(R) variations made in experiment
 - Strong braking at increased T_i with lithium, even if $(v_i/\epsilon)/nq\omega_E < 1$
 - Want greater (v_i/ϵ)/nq ω_E variation; better quasi-steady-state w_{ϕ} condition
- Apparent braking of resonant surfaces plasmas at low ω_{ϕ} , but without locking (e.g. ω_{ϕ} goes to ~ zero locally, then increases)
- □ Apparent lack of $1/\omega_{\phi}$ scaling of drag torque on resonant surfaces at low ω_{ϕ}
 - <u>Provocative result</u> is current layer / island width decreasing at low ω_{ϕ}
 - ...or perhaps drag due to "island NTV" ~ ω_φ
 (K.C. Shaing et al., PRL 87 (2001))
 - ...or perhaps due to superbanana plateau physics (K.C. Shaing et al., PPFC **51** (2009))

XP1062 aims at next-step goals from XP933, allowed by LLD, RF operation

Goals / Approach

- Compare magnetic braking with largest variation of v_i^* using LLD
 - Target a comparison of two conditions: low vs. high v_i*
 - Concentrate on new low v_i* condition
 - Compare to past braking XPs if high v_i* condition is difficult to produce
- Generate greater variation of key parameter $(v_i/\epsilon)/|nq\omega_E|$
 - Operate some shots with 1 NBI source (higher ω_{E})
 - Mostly run 2 3 NBI sources generate lowest v_i , vary ω_E with braking as before
 - Concentrate on low ω_{E} to further examine superbanana plateau regime/theory
 - Additional $nq\omega_E$ variation possible by comparing n = 2 vs. 3 if time allows
- Determine NTV offset rotation
 - Standard approach: attempt to observe offset by operating at near-zero ω_{ϕ} (might be easier with LLD)
 - Consider new approach using RF (based on RF XPs from 2009)
 - Generate ω_{ϕ} with RF at highest T_i, W_{tot} possible, diagnose similar to Hosea/Podesta 2009
 - **C** Repeat for different *initial* values of n = 3 braking field, determine of initial ω_{ϕ} changes
 - □ Note that if NTV offset is indeed only in counter-I_p direction, the ω_{ϕ} profile will change (it's presently counter in core, co at the edge

Zero input torque ω_{ϕ} profile diagnosed in 2009 RF XPs

<u>XP1062: NTV behavior at low ion collisionality and</u> <u>maximum variation of ω_E – shot plan</u>

Task Number of Sh	<u>ots</u>
1) Generate low and high collisionality comparison shots and apply braking	
(use ~fiducial targets established in 2010, 1-3 NBI sources)	
A) (if possible) Operate "high collisionality" comparison shot	2*
B) Operate low collisionality target shot (3 NBI sources, then 2)	2
C) Apply n = 3 braking in low and high collisionality targets	2*
D) (optionally) apply n = 1 EFC 75ms filter in low collisionality plasma (comparison)	1*
2) Generate greater variation of $(v_i/\epsilon)/ nq\omega_{\rm F} $	
A) Early n = 3 application (t ~ 0.2s), vary n = 3 current to produce two different quasi-steady ω_E levels	
(high beta, high T _i condition); step n = 3 currents from two different quasi-steady levels,	
reach quasi-steady state with 2 different braking currents; more than one step/shot if long pulse	4
B) (if possible) Rerun most desirable case from 2A) in high collisionality target	2*
C) Concentrate on generating low ω_{ϕ} (low ω_{E}) in SBP regime by varying braking waveform	4
D) Operate with one NBI source for highest ω_{ϕ} (high $\omega_{\rm E}$)	2
3) Determine NTV offset rotation	
A) If desired, supplement shots step 2 to determine by $\omega_{\phi-offset} = \omega_{\phi} - K/\delta B^2$) or direct observation	2*
B) <u>RF Approach</u> : generate RF target (high temperature desired); add NBI late in shot for ω_{ϕ} diagnosis	4
C) Rerun 3B) with three different braking field magnitudes	4
D) Reversed I _p scans <u>(for future)</u>	
Repeat scans from 2 above in reversed Ip to diagnose NTV offset rotation	<u>10</u>
Total (leveraging survey XP, no optional shots*; no survey XP; I _p ; reversed I _p): 20;	29;10

<u>XP1062: NTV behavior at low ion collisionality and</u> <u>maximum variation of ω_E – Diagnostics, etc.</u>

- Required diagnostics / capabilities
 - **RWM** coils in standard n = 1,3 configuration (optionally, n = 2)
 - RF heating capability
 - CHERS toroidal rotation measurement
 - Thomson scattering
 - MSE
 - Toroidal Mirnov array / between-shots spectrogram with toroidal mode number analysis
 - Diamagnetic loop
- Desired diagnostics
 - USXR and ME-SXR
 - FIReTip
 - Fast camera

