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RWM passive stability vs. rotation at low li
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• Motivation
– It is key to understand passive stability in regimes of high importance to the 

future of the ST (low li).

– Kinetic theory indicates that plasmas with ωφ in between ωD and ωb
resonances have weakened stability.

– NSTX has the capability to test the importance of various effects in the theory.

• Goals
– Verification of a unified, quantitative physics model for RWM stability based on 

variations of key variables in plasma near marginal stability.

– Compare stable γ and ωr measured with MHD spectroscopy , and the 
marginally unstable points, as a function of ωφ and other key parameters, and 
compare to kinetic theory prediction. 

– Provide input to the eventual goal of realtime stability limit detection via 
resonant field amplification (RFA) measurement.

(Berkery et al., PRL, 2010)
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RWM passive stability vs. rotation at low li

3

• Addresses:
– NSTX Milestone R(10-1): Assess sustainable beta and disruptivity

near and above the ideal no-wall limit. 

– ITPA: MDC-2: Joint experiments on resistive wall mode physics.

– ITPA: MDC-12: Non-resonant magnetic braking.

– ReNeW Thrust 16 proposed action: Implement and understand 
active and passive control techniques to enable long-pulse 
disruption-free operation in plasmas with very broad current 
profiles.
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NSTX plasmas can go unstable at weakened stability 
rotation, or can navigate through to low rotation
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• Weakened stability occurs at relatively high rotation when 
ωφ is between ωD and ωb stabilizing resonances
– Some shots are able to avoid RWM instability, make it to low ωφ
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DIII-D results, Jan. 2010, are consistent with kinetic model
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• Measured response to external n=1 fields (20 Hz) indicates 
that discharges were indeed least stable for ΩτA ~ 0.8-1.0%.
– Large plasma 

response to 
external (quasi-
static) n=1 field 
indicates weakly 
damped RWM.

– Key features of 
the kinetic 
modeling are 
duplicated.

(Reimerdes, DIII-D Friday Science 
Meeting, February 12, 2010)
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Realtime stability limit detection via RFA is an eventual goal

• This experiment can also 
provide valuable data to the 
eventual goal of realtime 
stability limit detection via RFA.
– Traveling waves will be applied 

for many shots that will approach, 
and reach, unstable conditions.

 

RFA =
BR ,Diff ,Peak− to−Peak

IRWM ,Peak− to−Peak
BR,Diff

SPA-1

βN

RFA

(Gerhardt, XP930 presentation, 2009)
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XP1020: Determination of Weak RWM 
Stability Rotation Profiles

• Approach
– Establish long pulse target plasmas at low li.

– If low li target proves difficult, can use standard long pulse shot.

– Use mild n=3 non-resonant magnetic braking to get a slow ramp 
to low rotation without RWM instability.

– Use guidance from previous XPs and MISK to find conditions that are near 
marginal stability.

– If disruption is unavoidable, optionally add n=1 feedback at crucial time 

– Add n=1, 30 Hz., 1kA peak to peak traveling wave for active MHD 
spectroscopy.

– Will be used in the background of all shots, as a diagnostic.

– Vary key parameters in the model that can alter RWM stability, to 
determine the effect on the plasma for comparison to theory.

7
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XP1020: Determination of Weak RWM 
Stability Rotation Profiles
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• Approach, continued
– Vary key parameters in the model that can alter RWM stability, to 

determine the effect on the plasma for comparison to theory.

rotation 
resonances
and 
collisionality
effect

EPs add stability.  
New term from theory 
(asymmetric f):

Electrostatic effect: 
not previously included 
in calculation.  Important 
with strong co-NBI.
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XP1020: Determination of Weak RWM 
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rotation 
resonances
and 
collisionality
effect

EPs add stability.  
New term from theory 
(asymmetric f):

Electrostatic effect: 
not previously included 
in calculation.  Important 
with strong co-NBI.

• Approach, continued
– Vary key parameters in the model that can alter RWM stability, to 

determine the effect on the plasma for comparison to theory.
1. Use extremes of energetic particle fraction.

2. Use extremes of collisionality.

3. Vary quantities related to the electrostatic term.

4. Test the importance of B~
||/B with pulses of n = 3 field.
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XP1020: Determination of Weak RWM 
Stability Rotation Profiles
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βa/βtot = 0.172 βa/βtot = 0.312

• Approach, continued
– Vary key parameters in the model that can alter RWM stability, to 

determine the effect on the plasma for comparison to theory.
1. Use extremes of energetic particle fraction.

2. Use extremes of collisionality.

3. Vary quantities related to the electrostatic term.

4. Test the importance of B~
||/B with pulses of n = 3 field.
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Shot Plan
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Shot Plan, continued
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• Required diagnostics / capabilities
– Ability to operate RWM coils in n = 3 configuration

– RWM sensors

– CHERS toroidal rotation measurement

– Thomson scattering

– USXR

– MSE 

– Standard magnetics and diamagnetic loop

– FIDA

• Desired diagnostics
– FIReTip

– Fast camera

– CHERS poloidal rotation measurement

RWM Passive Stabilization Physics - Diagnostics
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Active MHD spectroscopy can measure growth rate and 
mode rotation frequency
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121083 @ 0.475 s
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(Reimerdes, PPCF, 2007)

Comparing measured γ and ωr to 
theory will improve understanding 
of RWM stability.
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