

College W&M

Columbia U

CompX

INL

LANL

LLNL

MIT

ORNL

PPPL

PSI

SNL

Lodestar

Colorado Sch Mines

General Atomics

Johns Hopkins U

Nova Photonics

Old Dominion U

New York U

Princeton U

Think Tank, Inc.

Purdue U

UC Davis

UC Irvine

U Colorado

U Maryland

U Rochester

U Wisconsin

U Washington

U Illinois

UCLA

UCSD

Supported by

MS TSG Pre-Forum Meeting Comments on R11-2

Stefan Gerhardt

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA, Frascati CEA, Cadarache **IPP, Jülich IPP, Garching** ASCR, Czech Rep **U** Quebec

Some Background

- NSTX typically scans A and κ simultaneously.
- No inner gap control (at present).

NSTX

- Calculations (using experimental profiles) show a reduced ideal no-wall limit when A and κ are increased.
- Have never done a dedicated experiment to test the experiment beta limit vs. (high) κ and A.

We need to robustly sustain β_N =4.5-5 at high A and κ

- Simulations for 1.0 T, 1.0 MA, κ =2.7, A=1.65, 12 MW
 - Need β_N =4.5-5, at H₉₈=1.1, for fully non-inductive operation.
- Scenarios with lower current and more NBCD will likely need A~1.8, κ~2.9-3.0 for more off-axis CD.

1.0 T, 1000 kA, A=1.65, κ =2.7, R $_{tan}$ =[50,60,70,110,120,130] 90 kV Beams

1.0 T, 1000 kA, A=1.65, κ=2.7, R_{tan}=[50,60,70,110,120,130] 90 kV Beams

2011 & 12 MS Pre-Forum Meeting

Ideal Stability May Further Limit the Operating Space

1.0 T, 1000 kA, A=1.65, κ=2.7, R_{tan}=[50,60,70,110,120,130] 90 kV Beams

1.0

1.6

Important future task: re-run with some additional fast ion diffusion to reduce the central NBCD and pressure peaking.

Also would be nice to improve the resolution in $[H_{98}, f_{GW}]$ space.

What kind of shape changes are possible?

- Inner gap scan at fixed outer gap.
- Simultaneously increases A and $\kappa.$
- Maintains (nearly) constant distance to the plates and B_P RWM sensors.
 Increase the outer gap for κ=3,
- A=1.75

All scans at 700 kA to avoid hitting PF-1A coil current limit!

- Aspect ratio scan at fixed κ .
- Inner and outer gaps change at fixed plasma height
- κ scan at fixed aspect ration.

• Plasma height changes with fixed inner and outer gaps.

[🔘] NSTX

^{2011 &}amp; 12 MS Pre-Forum Meeting

Possible (Likely?) ASC Contributions to R11-2

- Milestone has a component related to n=0 stability and control.
- Improve the vertical controller (SPG).
 - Produce a better realtime estimate of dZ/dt.
 - Optimize the derivative gain.
 - Proportional controller is the ISOFLUX algorithm.
 - If necessary, test use of RWM coils for vertical control.
- Test more advanced shape control algorithms (EK).
 - Use a fully populated "M-Matrix"
 - Use it to develop better inner- and bottomgap control.
- Performance impact of κ and A (SPG).
 - Scan A at fixed κ , and κ at fixed A.
 - Use reduced input power to avoid disruptions.
 - Test confinement (and current drive) changes due to shape modifications.

Loss of vertical control when I_i>0.6

XP Idea #1: The impact of elongation and aspect ratio on the ideal stability of ST plasmas

- NSTX has a large database of stability results with A<1.55 and κ <~2.4.
 - High-performance NSTX upgrade scenarios will run at larger values of both these parameters.
- It is hard to scan these parameters independently in NSTX...
 - Will be even harder in NSTX-U.
 - This run is the last chance for these types of scans.
- Relevant Milestone Text: The maximum sustainable normalized beta will be determined versus aspect ratio (up to A=1.7) and elongation (up to 3) and compared to ideal stability theory using codes such as DCON and PEST.
- Propose to do three types of scans (with fast RWM control off?):
 - Scan #1: Mixed κ & A scan at fixed outer gap (12 shots).
 - Use RFA analysis to look for passive instability.
 - Scan #2: A scan at fixed kappa (10 shots).
 - Test the disruptive β_N limit (use the β_N controller to ramp to a disrupting in a controlled way).
 - Scan #3: Kappa scan at fixed A (10 shots).
 - Test the disruptive β_N limit (use the β_N controller to ramp to a disrupting in a controlled way).
- Goals:
 - Determine if, within the achievable range of A and κ , there is a measurable change in global stability.
 - Compare to ideal stability theory.
 - Collect data validating the β -limit assumptions for NSTX Upgrade.

XP Idea #2:MHD Stability at Very High Toroidal-β and Normalized Current

- ST reactor designs typically assume very high toroidal β .
 - PPPL Pilot: 30-39%, ARIES-ST: 50%, Culham 59%
- It may be time to revisit discharge scenarios with very high $\beta_{T_{.}}$
 - We have made many improvements in control & discharge development since these were last tried in 2005.
 - Reduced PCS latency, RWM control, Li PFC conditioning, stronger shaping, better control during the I_P ramp.
 - We have many new and important diagnostics since 2005.
 - MSE, RWM sensors, better USXR systems.
 - We may have trouble making these shots again.
 - Higher aspect ratio of NSTX-U will lower ideal stability limits.
- Propose to revisit discharges in the $\beta_T \sim 40\%$ regime.
 - Characterize the limiting instabilities.
 - What is the maximum stable β_T at low q* during the phase when $q_{min} > 1.1$ (i.e. before kink/tearing starts).
 - Can we modify this limit via the profiles? Allow I_i to peak up to improve confinement and stability?
 - Determine to what extent recent operations improvements facilitate this regime.
 - Study disruption precursors.
 - Are disruptions detectable in advance?