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Kinetic terms in the RWM dispersion relation enable
stabilization; theory consistent with experimental results

Dissipation (Im(6W,)) and restoring force (Re(6W,))
from kinetic term enables stabilization of the RWM:
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[B. Hu et al., Phys. Plasmas 12, 057301 (2005)]
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Theory Development

10.0¢ — Collisionality model improvements

— Anisotropy of energetic particles
— Further rotation effects (inc. poloidal)
— Eigenfunction modifications

— Neoclassical orbit modification? (with
G. Kagan)

[J. Berkery et al., Phys. Rev. Lett. 104, 035003 (2010)]
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NSTX-U will have lower collisionality and second, off-axis
neutral beam
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[J. Menard et al., submitted to Nucl. Fusion (2011)]
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EPs have a generally stabilizing effect that is independent of
roation; Anisotropic distribution impacts stability
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with quantitative comparison to NSTX

exp (marginally stable)
wfb/wd) [J.W. Berkery et al., Phys. Plasmas 17, 082504 (2010)]
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Reduced collisionality (v) is stabilizing for RWMs, but only
near kinetic resonances

3 unstable - MISK currently uses an energy-dependent
% collisionality, MARS-K uses a constant.
©
s . .
s Possible improvements:
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Lorentz operator with pitch angle
dependence:

e NSTX-tested kinetic RWM stability C(fj) = —verfj + verc f;
theory: 2 competing effects at lower v

— Stabilizing collisional dissipation
reduced (expected from early theory)

— Stabilizing resonant kinetic effects
enhanced (contrasts early RWM va(e, X, ) = %Vzer
theory)
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[J. Berkery et al., Phys. Rev. Lett. 106, 075004 (2011)]
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Further exploration of the effect of plasma rotation
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— Eigenfunction modification (next " ﬂ/{wf
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each other.

[J. Menard, APS 2010 and 2011]
[N. Aiba et al., Phys. Plasmas 18, 022503 (2011)]  [). Menard et al., Nucl. Fusion 50, 045008 (2010)]
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The RWM eigenfunction may be modified by several factors
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[J. Menard and Y.Q. Liu, APS 2011]
Kinetic dissipation Plasma rotation
The importance of eigenfunction modification and Alfven resonances at rational
surfaces will come out of code benchmarking.
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The kinetic physics in MISK is currently being benchmarked
with MARS-K and HAGIS through the ITPA’s MDC-2

Solov’ ev case 1 (near C|rcular)
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