

Supported by

Kinetic RWM Stability Theory Needs for NSTX-U

J.W. Berkery

Colorado Sch Mines Columbia U CompX **General Atomics** INL Johns Hopkins U LANL LLNL Lodestar MIT Nova Photonics New York U **Old Dominion U** ORNL PPPL PSI **Princeton U** Purdue U SNL Think Tank, Inc. **UC Davis UC** Irvine **UCLA** UCSD **U** Colorado **U Illinois U** Maryland **U** Rochester **U** Washington **U Wisconsin**

College W&M

Department of Applied Physics, Columbia University, New York, NY, USA

NSTX-U Theory/Simulation Meeting Macroscopic Stability Group February 14th, 2012 Princeton Plasma Physics Laboratory

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA, Frascati CEA, Cadarache **IPP, Jülich IPP.** Garching ASCR, Czech Rep **U** Quebec

Kinetic terms in the RWM dispersion relation enable stabilization; theory consistent with experimental results

NSTX-U will have lower collisionality and second, off-axis neutral beam

[J. Menard et al., submitted to Nucl. Fusion (2011)]

EPs have a generally stabilizing effect that is independent of roation; Anisotropic distribution impacts stability

$$\delta W_{r} = \frac{1}{2} \int \left\{ \left(-\frac{|\tilde{B}_{k}|^{2}}{\mu_{0}} - \frac{B^{2}}{\mu_{0}} |\nabla \cdot \xi_{\perp} + 2\xi_{\perp} \cdot \kappa|^{2} + j_{\parallel} \left(\xi_{\perp}^{*} \times \tilde{b} \right) \cdot \tilde{B}_{\perp} \right) + 2(\kappa \cdot \xi_{\perp}^{*}) \left(\xi_{\perp} \cdot \nabla \rho_{reg} \right) \right\} dV.$$
(16)

$$\delta W_{A} = \frac{1}{2} \int \left\{ (\sigma - 1) \left(-\frac{|\tilde{B}_{\perp}|^{2}}{\mu_{0}} - \frac{B^{2}}{\mu_{0}} |\nabla \cdot \xi_{\perp} + 2\xi_{\perp} \cdot \kappa|^{2} + j_{\parallel} \left(\xi_{\perp}^{*} \times \tilde{b} \right) \cdot \tilde{B}_{\perp} \right) - 2B |\nabla \cdot \xi_{\perp} + \kappa \cdot \xi_{\perp}|^{2} \frac{\partial p_{reg}}{\partial B} \right\} dV.$$
Anisotropy effects fluid terms, mostly through ballooning term.

$$\delta W_{A} = \frac{1}{2} \int \left\{ (\sigma - 1) \left(-\frac{|\tilde{B}_{\perp}|^{2}}{\mu_{0}} - \frac{B^{2}}{\mu_{0}} |\nabla \cdot \xi_{\perp} + 2\xi_{\perp} \cdot \kappa|^{2} + j_{\parallel} \left(\xi_{\perp}^{*} \times \tilde{b} \right) \cdot \tilde{B}_{\perp} \right) - 2B |\nabla \cdot \xi_{\perp} + \kappa \cdot \xi_{\perp}|^{2} \frac{\partial p_{reg}}{\partial B} \right\} dV.$$
Also effects kinetic term, through pitch angle dependence of distribution function.

$$\delta W_{K} = \sum_{j} \sum_{k=-\infty}^{\infty} 2\sqrt{2\pi^{2}} \int \int \int \left[|\langle H/\hat{\varepsilon} \rangle|^{2} \frac{(\omega - n\omega_{E})}{n\langle \omega_{D}^{*} \rangle} + \frac{\partial q_{eff}}{\partial \omega_{eff}} + i\omega_{eff} - i\omega_{eff}^{*} + n\omega_{E} - \omega \right] \frac{\hat{\tau}}{m_{j}^{*}B} |\chi|^{\frac{1}{2}\frac{1}{2}} d\hat{\varepsilon} d\chi d\Psi,$$
Also effects kinetic term, through pitch angle dependence of distribution function.

$$f_{j}^{*}(\varepsilon, \Psi, \chi) = u_{j}A_{0} \left(\frac{m_{j}}{\delta_{j}} + \frac{1}{2^{\frac{1}{2}}} \frac{1}{n_{z}} \left(\exp\left[-\frac{(\chi + 2\pi \alpha)^{2}}{\delta \sqrt{2}} \right] + \exp\left[-\frac{(\chi + 2 + \chi \alpha)^{2}}{\delta \sqrt{2}} \right] + \exp\left[-\frac{(\chi - 2 + \chi \alpha)^{2}}{\delta \sqrt{2}} \right]$$

$$IN.$$
Gorelenkov *et al.*, Nucl. Fusion **45**, 226 (2015)]
$$\int \frac{1}{0} \frac{1}$$

0.5

[J.W. Berkery et al., Phys. Plasmas 17, 082504 (2010)]

1.0

Reduced collisionality (v) is stabilizing for RWMs, but only near kinetic resonances

(

- NSTX-tested kinetic RWM stability theory: 2 competing effects at lower v
 - Stabilizing collisional dissipation reduced (expected from early theory)
 - Stabilizing resonant kinetic effects enhanced (contrasts early RWM theory)

[J. Berkery et al., Phys. Rev. Lett. 106, 075004 (2011)]

MISK currently uses an energy-dependent collisionality, MARS-K uses a constant.

Possible improvements:

Particle, momentum, and energy conserving Krook operator for like-particle collisions (suggested by G. Hammett):

$$C(\tilde{f}_j) = -\nu_{\text{eff}} \tilde{f}_j + \nu_{\text{eff}} f_j \left[\frac{\tilde{n}_j}{n_j} + \frac{m_j u_{\parallel} v_{\parallel}}{T_j} + \frac{\tilde{T}_j}{T_j} \left(\hat{\varepsilon} - \frac{3}{2} \right) \right]$$

Lorentz operator with pitch angle dependence:

$$\nu_{3}(\varepsilon,\chi,\Psi) = \frac{1}{2}\nu_{2}\epsilon_{r} \left[Z_{\text{eff}} + \frac{1}{\sqrt{\pi\hat{\varepsilon}}}e^{-\hat{\varepsilon}} + \frac{1}{\sqrt{\pi}} \left(2 - \hat{\varepsilon}^{-1}\right) \int_{0}^{\sqrt{\hat{\varepsilon}}} e^{-t^{2}} dt \right] \frac{\partial}{\partial\chi} \left(1 - \chi^{2}\right) \frac{\partial}{\partial\chi} \left(1 - \chi^{2}\right$$

Further exploration of the effect of plasma rotation

- Effect on equilibrium
- Including poloidal rotation
- Eigenfunction modification (next slide)

[N. Aiba et al., Phys. Plasmas 18, 022503 (2011)]

Figure 26. (*a*) Comparison of plasma ω_E profiles versus *q* for the RWM-unstable plasma excluding (black) and including (other colours) the carbon impurity diamagnetic rotation in the radial force balance equation for the calculation of the electrostatic potential profile $\Phi(\psi)$. (*b*) Comparison of growth rates of the n = 1 RWM computed with the MARS-F code plotted versus ω_E using the generalized-geometry analytic fit to the particle orbit times and including the neoclassical parallel resistivity profile for the plasma resistivity.

[J. Menard, APS 2010 and 2011]

[J. Menard *et al.*, Nucl. Fusion **50**, 045008 (2010)]

0 NSTX

The RWM eigenfunction may be modified by several factors

The importance of eigenfunction modification and Alfven resonances at rational surfaces will come out of code benchmarking.

The kinetic physics in MISK is currently being benchmarked with MARS-K and HAGIS through the ITPA's MDC-2

$$V_{K} = -\frac{\sqrt{\pi}}{2} \int_{0}^{\Psi_{a}} \frac{nT}{B_{0}} \int_{B_{0}/B_{max}}^{B_{0}/B_{max}} \tau \sum_{l} (H/\hat{\varepsilon}) (I_{\hat{\varepsilon}}) d\Lambda d\Psi.$$

$$\frac{\text{Perturbed Lagrangian}}{\hat{\varepsilon}} (\Psi, \Lambda, l) = \frac{1}{\tau} \oint \frac{1}{\sqrt{1 - \frac{\Lambda B}{B_{0}}}} \left[\left(2 - 3\frac{\Lambda B}{B_{0}} \right) (\kappa \cdot \xi_{\perp}) - \left(\frac{\Lambda B}{B_{0}} \right) (\nabla \cdot \xi_{\perp}) \right] e^{-il\omega_{b}t} d\ell.$$

$$\frac{\text{Energy integral of the frequency resonance fraction}}{(M_{0}, \Lambda, l)} = \int_{0}^{\infty} \frac{\omega_{*N} + (\hat{\varepsilon} - \frac{3}{2}) \omega_{*T} + \omega_{E} - \omega_{r} - i\gamma}{\omega_{D} + l\omega_{b} + \omega_{E} - i\nu_{eff} - \omega_{r} - i\gamma} \hat{\varepsilon}^{\frac{5}{2}} e^{-\hat{\varepsilon}} d\hat{\varepsilon}.$$

$$\frac{1}{2} \int_{0}^{\frac{1}{2}} \int_{0}^{\frac{1}{$$

 $\Lambda = \mu B_0 / \epsilon$