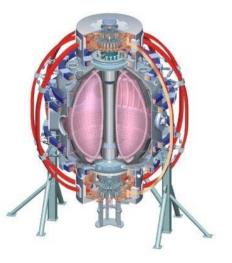


Supported by




## Progress and plans of General Perturbed Equilibrium Code (GPEC)

Columbia U CompX **General Atomics** FIU INL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** New York U ORNL PPPL **Princeton U** Purdue U SNL Think Tank. Inc. **UC Davis UC** Irvine UCLA UCSD **U** Colorado **U Illinois U** Maryland **U** Rochester **U** Washington **U** Wisconsin

#### Jong-Kyu Park Kimin Kim, Nikolaus Logan, Allen Boozer

#### Macroscopic stability TSG Meeting February 14, 2012

. . .





Culham Sci Ctr **U St. Andrews** York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U **loffe Inst RRC Kurchatov Inst** TRINITI NFRI KAIST POSTECH ASIPP ENEA, Frascati **CEA**, Cadarache **IPP**, Jülich **IPP, Garching** ASCR, Czech Rep

Office of

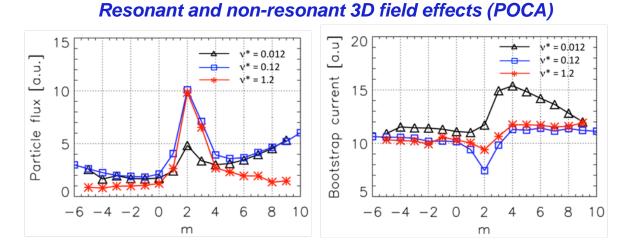
Science


### GPEC is the extension of IPEC (2-3 more years to finish)

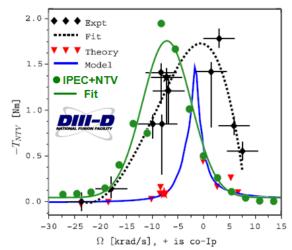
- General Perturbed Equilibrium Code (GPEC) is the extension of IPEC
  - To solve 3D force balance with general jump conditions at the layer
  - To solve 3D force balance with tensor pressure or general force
  - To provide fast and linearly self-consistent answer for 3D equilibrium including islands, rotations, NTVs
- Extension is made to retain large solutions as well as small solutions
  - This first step has been successful by solving Euler-Lagrange equations in the  $\delta B$  frame rather than the  $\xi$  frame
  - Issue with finite pressure gradient remains at the resonant surfaces, but solution at the non-resonant layer is almost independent on the layer treatment
  - Immediate applications : Classical  $\Delta$ ' index in general geometry, effects by other islands, field penetration with islands
- Tensor pressure solver is underway (POCA)
- Inner-layer solver development is planned with new manpower

2

## Update for perturbed equilibria with islands


- Presently the code can obtain an internal solution with an island at a rational surface, but without islands at other rational surfaces
- These are fundamental solutions for each rational surface and can be linearly combined with ideal eigenmodes in IPEC and can allow any jump condition at each rational surfaces




**NSTX** 

# **POCA** is drift-kinetic δf particle code, optimized to obtain accurate 3D force and to IPEC coupling

- POCA (Particle Orbit Code for Anisotropic pressures, by Kim) follows drift-kinetic particles with (presently) pitch-angle scattering collisions, but with conserved momentum, and directly calculates tensor pressure forces
  - Uses IPEC type routines, ready for 2D or 3D equilibrium coupling, and parallelized
  - Finishes 2D benchmark with ORBIT, for diffusion and bootstrap currents
  - Finishes basic tests with 3D fields, for diffusion and bootstrap currents
  - NTV and tensor pressure calculations are underway, rechecking verification work between general NTV theory and FORTEC-3D or validation in DIII-D



#### A future validation target



