

Columbia U

General Atomics

Johns Hopkins U

Nova Photonics

New York U

Princeton U

Think Tank. Inc.

Purdue U

UC Davis

UC Irvine

U Colorado

U Maryland

U Rochester

U Wisconsin

U Washington

U Illinois

UCLA

UCSD

CompX

FIU

INL

LANL

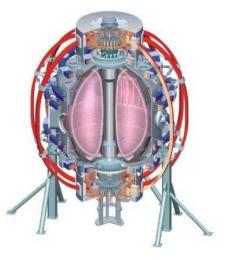
LLNL

MIT

ORNL PPPL

SNL

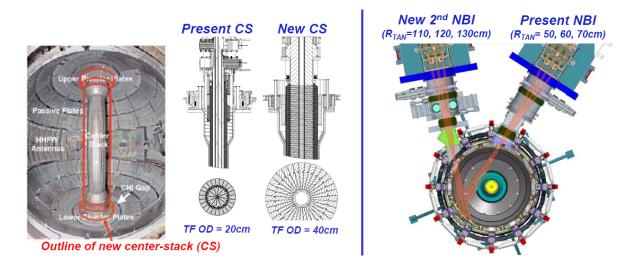
Lodestar


Supported by

Macroscopic Stability Theory and Computation for NSTX-U (Brainstorming and Plan)

Jong-Kyu Park John (Jack) Berkery

Macroscopic Stability TSG Meeting February 14, 2012


Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U **loffe Inst RRC Kurchatov Inst** TRINITI NFRI KAIST POSTECH ASIPP ENEA, Frascati CEA, Cadarache **IPP, Jülich IPP, Garching** ASCR, Czech Rep

Office of

Science

This Meeting: will discuss or identify 3-5 major topics for the next 5 year NSTX research

- To provide initial guidance for Theory/Experiment joint research topics on Macroscopic stability in preparation for next NSTX-U brainstorming meeting (March 2) and 5-year plan
 - Identify key theory and modeling needs
 - Address key issues from the perspective of both experiment and theory
- To support FY12-14 milestones during outage (good time for theory!)
- To prepare FY14-18 5 year plan for NSTX-U
 - Higher B_T, Higher A, low v^* , 2nd NBI (profiles, fast ions)

2

MS research includes 3D field, tearing, global, RWM stability, disruption physics

Category	Main topics in NSTX-U	Needs (Potentially supporting codes)
3D physics Tearing stability	Error field effects, dynamics, corrections	Precise linear or non-linear 3D equilibrium (IPEC, VMEC) Non-linear evolution of islands with external fields (M3D-C1)
	Tearing mode vs. error field, q, fast ions	Linear stability (Resistive DCON, PEST3, RPEC) Non-linear evolution of islands w, w/o external fields (M3D-C1)
	NTV braking vs. everything	Combinations (IPEC+ Theory, POCA, FORTEC3D, SPIRAL) Consistent methods (GPEC, M3D-C1, XGC0, XGC1)
Global stability RWM stability	n=1-3 stability limit vs. q, p, shaping, Ω	Equilibrium reconstruction (Kinetic EFITs or LRDFITs) Stability (DCON, PEST, GATO, ELITE? FLOW?)
	RWM stability vs. q, p, shaping, v^* , Ω	Plasma model (P or P with kinetic effects in VALEN3D) Kinetic stability (MISK, MARS-K, M3D-C1)
	RWM control using full 3D description	Structure model (State space model in VALEN3D, M3D-C1)
Disruption	Disruption (Halo current) effects	TBD contingent upon PPPL theory support
	Disruption detection and avoidance	Combinations of each stability prediction
	Disruption mitigation including MGI, runaways	Gas penetration physics (DEGAS2) Non-linear evolution of plasmas and runaways (TSC, M3D)

3D field and tearing physics

- Up to date:
 - IPEC, PEST, NTV theory can support the study of error field effects, tearing stability, and NTV braking
 - <u>Issues</u>: Locking threshold in low Ω? Tearing stability in ST? Consistent description of NTVs (field, dB²,(v, Ω, ω) mapping, neoclassical offset) ? Realistic rotation prediction for NSTX-U and ITER, including all the momentum sources?
- Existing plans for future (up to 5 years):
 - <u>Linear fluid</u>: GPEC to solve force balance equation with perturbed tensor pressures and islands. Perturbed tensor pressures will be solved by 3D orbit codes (POCA or FORTEC-3D) and island dynamics will also be solved numerically (RDCON or RPEC)
 - <u>Non-linear fluid</u>: M3D-C1 to describe non-linear fluid evolution with non-Maxwellian distribution function, including two fluid effects, gyro-viscosity, NTV
 - <u>Non-linear full-f particle</u>: XGC0 to describe full neoclassical effects, and XGC1 to obtain self-consistent momentum balances with 3D fields
 - For validation: 3D displacement, fast rotation profile, more 3D coils?

Global and RWM stability physics

- Up to date:
 - EFIT, LRDFIT, DCON, PEST, VALEN3D, MISK are supporting 2D equilibrium reconstructions, ideal and RWM stability
 - <u>Issues</u>: Kinetic EFITs consistent with TS+CHERS, fast ion contribution? 2D equilibrium and stability with rotation? Reliable ideal stability prediction? More precise and selfconsistent RWM passive and active limit prediction and control?
- Existing plans for future (up to 5 years):
 - <u>Linear fluid for RWM1</u>: MISK including anisotropic pressures, fast ions, etc, VALEN3D with multi-modes and state space model for external structures. Better plasma model can be coupled to VALEN3D. MARS-K with self-consistent eigenfunction.
 - <u>Non-linear fluid for RWM</u>: M3D-C1 to describe non-linear fluid evolution with non-Maxwellian distribution function, including gyro-viscosity, NTV, resistive wall
 - <u>Linear fluid for global stability</u>: Equilibrium and stability with rotation (FLOW)?
 Separatrix issues in ideal stability in high beta (GATO)?
 - For validation: 3D displacement, precise profiles, stability limit, fast ion diagnostics?

Disruption physics

- Up to date:
 - TSC supported NSTX design studies, M3D is supporting Halo current studies
 - <u>Issues</u>: Fundamental physics governing disruption dynamics? Reliable disruption detection? So predictions for NSTX-U and ITER? Gas penetration physics? Gas amount to mitigate disruption in ITER?
- Discussed plans for future (up to 5 years):
 - <u>3D equilibrium</u> : RPEC, VMEC, PIES + evolution dynamics? Wall structures?
 - <u>Non-linear fluid</u>: M3D-C1 to describe non-linear fluid evolution with non-Maxwellian distribution function, including two fluid effects and resistive wall
 - <u>Impurities, atomics</u>: DEGAS2 to understand gas penetration physics to plasmas and to simulate MGI disruption mitigation, TSC to predict runaway electron effects
 - <u>For validation</u>: More wall current diagnostics, impurity and neutron diagnostics?

6

List of possible topics in MS

Topics	Existing efforts	Note
Non-linear fluid modeling in 3D geometry for time-evolving dynamics of islands and neoclassical effects	M3D-C1 code with distribution function solver (Ramos theory or NTV theory), NSTX- U coils, wall structure implementation	This will increase fundamental capabilities of MS simulation in general. Should it be more specific?
Kinetic modeling for RWM with the full 3D geometry to improve self-consistency and controllability	MISK code including fast ions, multi-mode VALEN3D, improved plasma permeability in VALEN3D, MARS-K code can also be used for alternatives and benchmark	This has a lot of progress already and so is highly promising
Linear 3D equilibrium modeling including islands and neoclassical effects	IPEC code with tensor pressures and jump conditions and coupled with POCA, inner-layer solver (Rutherford equation, etc)	This will be useful for quick estimation, benchmark with M3D-C1 and XGC0
Gas penetration physics modeling for MGI	DEGAS2 code for massive gas injection	This is something missing in disruption simulation efforts and can be unique in NSTX
More robust equilibrium and stability modeling including rotation and SOL	FLOW code coupled to GEQDSK? Stability with rotation? Extend region to separatrix? MARS-F and MARS-K?	This is typically ignored but can increase confidence and robustness in basic equilibrium and stability